Opioids and brain imaging


  • Shyam Balasubramanian, MBBS, MD, FRCA
  • Patricia Morley-Forster, MD, FRCPC
  • Yves Bureau, PhD




brain imaging, fMRI, PET, central opioid pathways, central pain processing


Since the introduction of the gate-control theory, a plethora of evidence to support the spinal processing of pain signals has come to light. Cognitive and affective aspects of the pain experience indicate the importance of supraspinal structures, but the biological mechanisms have remained inadequately explored. Within the past decade, imaging techniques have emerged that enable in vivo assessment of the central opioidergic system and the central processing of pain. The two most important imaging modalities to this end are functional magnetic resonance imaging (fMRI) and positron emission tomography (PET). This article will describe the underlying principles of these techniques and explain their importance in determining the loci of opioidergic pathways and their neuromodulatory influence on acute and chronic pain conditions, role in placebo effects, implication in drug dependence, and potential role in studying the analgesic efficacy of new drugs.

Author Biographies

Shyam Balasubramanian, MBBS, MD, FRCA

Clinical Fellow, Interdisciplinary Pain Program, Schulich School of Medicine, St. Joseph’s Health Care London, London, Ontario, Canada.

Patricia Morley-Forster, MD, FRCPC

Medical Director, Interdisciplinary Pain Program, Schulich School of Medicine, St. Joseph’s Health Care London, London, Ontario, Canada.

Yves Bureau, PhD

Research Scientist, Lawson Health Research Institute, University of Western Ontario, London, Ontario, Canada.


Melzack R, Casey KL: Sensory, motivational and central control determinants of pain. In Kenshalo DR (ed.): The Skin Senses. Springfield: Thomas, 1968.

Weisenberg M, Schwarzwald J, Tepper I: The influence of warning signal timing and cognitive preparation on the aversiveness of cold-pressor pain. Pain. 1996; 64: 379-385.

Petrovic P, Ingvar M: Imaging cognitive modulation of pain processing. Pain. 2002; 95: 1-5.

Sprenger T, Berthele A, Platzer S, et al.: What to learn from in vivo opioidergic brain imaging? Eur J Pain. 2005; 9(2): 117-121.

Frost JJ, Wagner HN Jr, Dannals RF, et al.: Imaging opiate receptors in the human brain by positron tomography. J Comput Assist Tomogr. 1985; 9(2): 231-236.

Talbot JD, Marrett S, Evans AC, et al.: Multiple representations of pain in human cerebral cortex. Science. 1991; 251: 1355-1358.

Chen AC: New perspectives in EEG/MEG brain mapping and PET/fMRI neuroimaging of human pain. Int J Psychophysiol. 2001; 42(2): 147-159.

Davis KD, Wood ML, Crawley AP, et al.: fMRI of human somatosensory and cingulate cortex during painful electrical nerve stimulation. Neuroreport. 1995; 7(1): 321-325.

Davis KD, Kwan CL, Crawley AP, et al.: Event-related fMRI of pain: Entering a new era in imaging pain. Neuroreport. 1998; 9(13): 3019-3023.

Lingford-Hughes A: Human brain imaging and substance abuse. Curr Opin Pharmacol. 2005; 5: 42-46.

Tracey I: Prospects for human pharmacological functional magnetic resonance imaging (phMRI). J Clin Pharmacol. 2001; 41: 21S-28S.

Newberg AB, Wang J, Rao H: Concurrent CBF and CMRG1c changes during human brain activation by combined fMRI-PET scanning. Neuroimage. 2005; 28: 500-506.

Schulthess GK: Positron emission tomography versus positron emission tomography/computed tomography: From “unclear” to “new-clear” medicine. Mol Imaging Biol. 2004; 6(4): 183-187.

Beyer T, Antoch G, Müller S, et al.: Acquisition protocol considerations for combined PET/CT imaging. J Nucl Med. 2004; 45: 25S-35S.

Vogel WV, Oyen WJG, Barentsz JO, et al.: PET/CT: Panacea, redundancy, or something in between? J Nucl Med. 2004; 45: 15S-24S.

Pichler BJ, Judenhofer MS, Catana C, et al.: Performance test of an LSO-APD detector in a 7-T MRI scanner for simultaneous PET/MRI. J Nucl Med. 2006; 47(4): 639-647.

Frost JJ: PET imaging of the opioid receptor: The early years. Nucl Med Biol. 2001; 28(5): 509-513.

Dannals RF, Ravert HT, Frost JJ, et al.: Radiosynthesis of an opiate receptor binding radiotracer: [11C]carfentanil. Int J Appl Radiat Isot. 1985; 36(4): 303-306.

Henriksen G, Platzer S, Hauser A: 18F-labeled sufentanil for PET-imaging of m-opioid receptors. Bioorg Med Chem Lett. 2005; 15: 1773-1777.

Talbot PS, Narendran R, Butelman ER, et al.: 11C-GR103545, a radiotracer for imaging kappa-opioid receptors in vivo with PET: Synthesis and evaluation in baboons. J Nucl Med. 2005; 46(3): 484-494.

Pert CB, Snyder SH: Opiate receptor: Demonstration in nervous tissue. Science. 1973; 179(77): 1011-1014.

Bencherif B, Fuchs PN, Sheth R, et al.: Pain activation of human supraspinal opioid pathways as demonstrated by [11C]-carfentanil and positron emission tomography (PET). Pain. 2002; 99(3): 589-598.

Peyron R, Laurent B, Garcia-Larrea L: Functional imaging of brain responses to pain. A review and meta-analysis. Neurophysiol Clin. 2000; 30(5): 263-288.

Albe-Fessard D, Berkley KJ, Kruger L, et al.: Diencephalic mechanisms of pain sensation. Brain Res. 1985; 356(3): 217-296.

Zubieta JK, Dannals RF, Frost JJ: Gender and age influences on human brain mu-opioid receptor binding measured by PET. Am J Psychiatry. 1999; 156(6): 842-848.

Schadrack J, Willoch F, Platzer S, et al.: Opioid receptors in the human cerebellum: Evidence from [11C]diprenorphine PET, mRNA expression and autoradiography. Neuroreport. 1999; 10(3): 619-624.

Adler LJ, Gyulai FE, Diehl DJ: Regional brain activity changes associated with fentanyl analgesia elucidated by positron emission tomography. Anesth Analg. 1997; 84: 120-126.

Corbetta M, Miezin FM, Dobmeyer S, et al.: Selective and divided attention during visual discriminations of shape, color, and speed: Functional anatomy by positron emission tomography. J Neurosci. 1991; 11(8): 2383-2402.

Sprenger T, Wagner K, Willoch F, et al.: Hot-spots of opioid receptor activation by m-agonists—a fusion study of [11C]-diprenorphine and H215O-PET. J Cereb Blood Flow Metab. 2003; 23(suppl. 1): 715.

Wise RG, Williams P, Tracey I: Using fMRI to quantify the time dependence of remifentanil analgesia in the human brain. Neuropsychopharmacology. 2004; 29(3): 626-635.

Grevert P, Albert LH, Goldstein A: Partial antagonism of placebo analgesia by naloxone. Pain. 1983; 16(2): 129-143.

Borras MC, Becerra L, Ploghaus A, et al.: FMRI measurement of CNS responses to naloxone infusion and subsequent mild noxious thermal stimuli in healthy volunteers. J Neurophysiol. 2004; 91: 2723-2733.

Petrovic P, Kalso E, Petersson KM, et al.: Placebo and opioid analgesia—imaging a shared neuronal network. Science.2002; 295: 1737-1740.

Amanzio M, Benedetti F: Neuropharmacological dissection of placebo analgesia: Expectation-activated opioid systems versus conditioning-activated specific subsystems. J Neurosci. 1999; 19(1): 484-494.

Wager TD, Rilling JK, Smith EE, et al.: Placebo-induced changes in FMRI in the anticipation and experience of pain. Science. 2004; 303(5661): 1162-1167.

Zubieta JK, Bueller JA, Jackson LR, et al.: Placebo effects mediated by endogenous opioid activity on m-opioid receptors. J Neurosci. 2005; 25(34): 7754-7762.

Zubieta JK, Smith YR, Bueller JA, et al.: Regional mu opioid receptor regulation of sensory and affective dimensions of pain. Science. 2001; 293(5528): 311-315.

Willoch F, Tolle TR, Wester HJ, et al.: Central pain after pontine infarction is associated with changes in opioid receptor binding: A PET study with 11C-diprenorphine. AJNR Am J Neuroradiol. 1999; 20(4): 686-690.

Jones AK, Watabe H, Cunningham VJ, et al.: Cerebral decreases in opioid receptor binding in patients with central neuropathic pain measured by [11C]diprenorphine binding and PET. Eur J Pain. 2004; 8(5): 479-485.

Roache JD: Performance and physiological measures in abuse liability evaluation. Br J Addict. 1991; 86(12): 1595-1600.

Zubieta JK, Gorelick DA, Stauffer R, et al.: Increased mu opioid receptor binding detected by PET in cocaine-dependent men is associated with cocaine craving. Nat Med. 1996; 2(11): 1225-1229.

Machulla HJ, Heinz A: Radioligands for brain imaging of the kappa-opioid system. J Nucl Med. 2005; 46(3): 386-387.

Kling MA, Carson RE, Borg L, et al.: Opioid receptor imaging with positron emission tomography and [(18)F]cyclofoxy in long-term, methadone-treated former heroin addicts. J Pharmacol Exp Ther. 2000; 295(3): 1070-1076.

Melichar JK, Hume SP, Williams TM, et al.: Using [11C]-Diprenorphine to image opioid receptor occupancy by methadone in opioid addiction: Clinical and preclinical studies. J Pharmacol Exp Ther. 2005; 312(1): 309-315.

Greenwald MK, Johanson CE, Moody DE, et al.: Effects of buprenorphine maintenance dose on mu-opioid receptor availability, plasma concentrations, and antagonist blockade in hero-in-dependent volunteers. Neuropsychopharmacology. 2003; 28: 2000-2009.

Xu X, Fukuyama H, Yazawa S, et al.: Functional localization of pain perception in the human brain studied by PET. Neuroreport. 1997; 8(2): 555-559.

Porro CA: Functional imaging and pain: Behavior, perception, and modulation. Neuroscientist. 2003; 9(5): 354-369.

Bucher SF, Seelos KC, Oertel WH, et al.: Cerebral generators involved in the pathogenesis of the restless legs syndrome. Ann Neurol. 1997; 41(5): 639-645.




How to Cite

Balasubramanian, MBBS, MD, FRCA, S., Morley-Forster, MD, FRCPC, P., & Bureau, PhD, Y. (2006). Opioids and brain imaging. Journal of Opioid Management, 2(3), 147–153. https://doi.org/10.5055/jom.2006.0024