Opioid treatment of experimental pain activates nuclear factor-κB

Authors

  • Peggy Compton, RN, PhD
  • Charles Griffis, CRNA, PhD
  • Elizabeth Crabb Breen, PhD
  • Matthew Torrington, MD
  • Ryan Sadakane, BS
  • Eshetu Tefera, MS
  • Michael R. Irwin, MD

DOI:

https://doi.org/10.5055/jom.2015.0261

Keywords:

pain, opioids, NF-B, cold-pressor test, fentanyl

Abstract

Objective: To determine the independent and combined effects of pain and opioids on the activation of an early marker of inflammation, nuclear factor-κB (NF-κB).

Design: NF-κB activation was compared within-subjects following four randomly ordered experimental sessions of opioid-only (intravenous fentanyl 1 μg/kg), pain-only (cold-pressor), opioid + pain, and a resting condition.

Setting: University General Clinical Research Center.

Participants: Twenty-one (11 female) healthy controls.

Interventions: Following exposure to treatment (fentanyl administration and/or cold-pressor pain), blood samples for NF-kB analysis were obtained.

Main outcome measures: Intracellular levels of activated NF-κB, in unstimulated and stimulated peripheral blood mononuclear cells at 15 and 30 minutes.

Results: Neither pain nor opioid administration alone effected NF-κB levels in cell populations; however, the combination of treatments induced significant increases of NF-κB in stimulated peripheral blood mononuclear cell, lymphocytes, and monocytes.

Conclusions: The combination of acute pain with opioids, as occurs in clinical situations, activates a key transcription factor involved in proinflammatory responses.

Author Biographies

Peggy Compton, RN, PhD

Department of Nursing, School of Nursing and Health Studies, Georgetown University, Washington, DC.

Charles Griffis, CRNA, PhD

Department of Anesthesiology, University of California, Los Angeles, Los Angeles, California.

Elizabeth Crabb Breen, PhD

Cousins Center for Psychoneuroimmunology, Semel Institute for Neurosciences, University of California, Los Angeles, Los Angeles, California.

Matthew Torrington, MD

Department of Family Medicine, University of California, Los Angeles, Los Angeles, California.

Ryan Sadakane, BS

Cousins Center for Psychoneuroimmunology, Semel Institute for Neurosciences, University of California, Los Angeles, Los Angeles, California.

Eshetu Tefera, MS

Department of Biostatistics and Epidemiology, MedStar Health Research Institute, Columbia, Maryland.

Michael R. Irwin, MD

Cousins Center for Psychoneuroimmunology, Semel Institute for Neurosciences, University of California, Los Angeles, Los Angeles, California.

References

Hutchinson MR, Coats BD, Lewis SS, et al.: Proinflammatory cytokines oppose opioid-induced acute and chronic analgesia. Brain Behav Immun. 2008; 22(8): 1178-1189.

Ren K, Dubner R: Interactions between the immune and nervous systems in pain. Nat Med. 2010; 16(11): 1267-1276.

Greisen J, Juhl C, Grofte T, et al.: Acute pain induces insulin resistance in humans. Anesthesiology. 2001; 95(3): 578-584.

Lutgendorf SK, Logan H, Costanzo E, et al.: Effects of acute stress, relaxation, and a neurogenic inflammatory stimulus on interleukin-6 in humans. Brain Behav Immun. 2004; 18(1): 55-64.

Griffis CA, Irwin MR, Martinez-Maza O, et al.: Pain-related activation of leukocyte cellular adhesion molecules: Preliminary findings. Neuroimmunomodulation. 2007; 14(5): 224-228.

Edwards RR, Kronfli T, Haythornwaite JA, et al.: Association of catastrophizing with interleukin-6 responses to acute pain. Pain. 2008; 140(10): 135-144.

Hutchinson MR, Bland ST, Johnson KW, et al.: Opioid-induced glial activation: Mechanisms of activation, dependence, and reward. Sci World J. 2007; 7: 98-111.

Griffis CA, Crabb Breen E, Compton P, et al.: Acute painful stress and inflammatory mediator production. Neuroimmunomodulation. 2013; 20(3): 127-133.

Rang HP, Dale MM, Henderson G: Analgesic drugs. In Rang & Dale’s Pharmacology. 7th ed. London: Churchill Livingstone, 2011: 503-524.

Schumacher MA, Bausbaum A, Way WL: Opioid analgesics and antagonists. In Katzung B, Masters S, Trevor A (eds.): Basic and Clinical Pharmacology. 12th ed. New York, NY: McGraw Hill Companies, 2012: 543-564.

Beilin B, Shavit Y, Hart J, et al.: Effects of anesthesia based on large vs. small doses of fentanyl on natural killer cell cytotoxicity in the perioperative period. Anesth Analg. 1996; 82(3): 492-497.

Hall DM, Suo JL, Weber RJ: Opioid mediated effects on the immune system: Sympathetic nervous system involvement. J Neuroimmunol. 1998; 83(1-2: 29-35.

McCarthy L, Wetzel M, Sliker JK, et al.: Opioids, opioid receptors, and the immune response. Drug Alcohol Depend. 2001; 62(2): 111-123.

Bussiere JL, Adler MW, Rogers TJ, et al.: Cytokine reversal of morphine-induced suppression of the antibody response. J Pharmacol Exp Ther. 1993; 264(2): 591-597.

Eisenstein EM, Jaffe JS, Strober W: Reduced interleukin-2 (IL-2) production in common variable immunodeficiency is due to a primary abnormality of CD4+ T cell differentiation. J Clin Immunol. 1993; 13(4): 247-258.

Martin-Kleiner I, Balog T, Gabrilovac J: Signal transduction induced by opioids in immune cells: A review. Neuroimmunomodulation. 2006; 13(1): 1-77.

Bastami S, Norling C, Trinks C, et al.: Inhibitory effect of opiates on LPS mediated release of TNF and IL-8. Acta Oncol. 2013; 52(5): 1022-1033.

Börner C, Kraus J: Inhibition of NF-B by opioids in T cells. J Immunol. 2013; 191(9): 4640-4647.

Mizota T, Tsujikawa H, Shoda T, et al.: Dual modulation of the T-cell receptor-activated signal transduction pathway by morphine in human T lymphocytes. J Anesth. 2013; 27(1): 80-87.

Brack A, Rittner HL, Stein C: Immunosuppressive effects of opioids—Clinical relevance. J Neuroimmune Pharmacol. 2011; 6(4): 490-502.

Al-Hashimi M, Scott SW, Thompson JP, et al.: Opioids and immune modulation: more questions than answers. Br J Anaesth. 2013; 111(1): 80-88.

Ninkovic´ J, Roy S: Role of the mu-opioid receptor in opioid modulation of immune function. Amino Acids. 2013; 45(1): 9-24.

Hawkley L, Cacioppo J: Stress and the aging immune system. Brain Behav Immun. 2004; 18: 114-119.

Krichevsky S, Pawelee G, Gural A, et al.: Age related microsatellite instability in T cells from healthy individuals. Exp Gerontol. 2004; 39(4): 507-515.

Walker DJ, Zancy JP: Subjective, psychomotor, and physiological effects of cumulative doses of opioid mu agonists in healthy volunteers. J Pharmacol Exp Ther. 1999; 289(3): 1454-1464.

Eckhardt K, Li S, Ammon S, et al.: Same incidence of adverse drug events after codeine administration irrespective of the genetically determined differences in morphine formulation. Pain. 1998; 76(1-2): 27-33.

Wolff BB, Kantor TG, Cohen P: Laboratory pain induction methods for human analgesic assays. In Bonica JJ, Albe-Fessard D (eds.): Advances in Pain Research and Therapeutics. 1st ed. New York: Raven Press, 1976: 363-367.

Garcia de Jalon PD, Harrison FJ, Johnson KI, et al.: A modified cold stimulation technique for the evaluation of analgesic activity in human volunteers. Pain. 1985; 22(2): 183-189.

Davis KD, Pope GE: Noxious cold evokes multiple sensations with distinct time courses. Pain. 2002; 98(1-2): 179-185.

Cruz-Almeida Y, King CD, Wallet SM, et al.: Immune biomarker response depends on choice of experimental pain stimulus in healthy adults: A preliminary study. Pain Res Treat. 2012; 2012.

Goodin BR, Quinn NB, King CD, et al.: Salivary cortisol and soluble tumor necrosis factor-receptor II responses to multiple experimental modalities of acute pain. Psychophysiology. 2012; 49(1): 118-127.

Pace TW, Mletzko TC, Alagbe O, et al.: Increased stress-induced inflammatory responses in male patients with major depression and increased early life stress. Am J Psychiatry. 2006; 163(9): 1630-1633.

Robertson D, Johnson GA, Robertson RM, et al.: Comparative assessment of stimuli that release neuronal and adrenomedullary catecholamines in man. Circulation. 1979; 59(4): 637-643.

Stratton JR, Halter JB, Hallstrom AP, et al.: Comparative plasma catecholamine and hemodynamic responses to handgrip, cold pressor and supine bicycle exercise testing in normal subjects. J Am Coll Cardiol. 1983; 2(1): 93-104.

Goodin BR, Quinn NR, Kronfli T, et al.: Experimental pain ratings and reactivity of cortisol and soluble tumor necrosis factor-receptor II following a trial of hypnosis: Results of a randomized controlled pilot study. Pain Med. 2012; 13(1): 29-44.

Walsh NE, Schoenfeld L, Ramamurthy S, et al.: Normative mode for cold pressor test. Am J Phys Med Rehabil. 1989; 68(1): 6-11.

Zacny JP, McKay MA, Toledano AY, et al.: The effects of a cold-water immersion stressor on the reinforcing and subjective effects of fentanyl in healthy volunteers. Drug Alcohol Depend. 1996; 42(2): 133-142.

Conley KM, Toledano AY, Apfelbaum JL, et al.: Modulating effects of a cold water stimulus on opioid effects in volunteers. Psychopharmacology (Berl). 1997; 131(4): 313-320.

Lovallo W: The cold pressor test and autonomic function: A review and integration. Psychophysiology. 1975; 12(3): 268-282.

Carroll D, Davey S, Willemsen G, et al.: Blood pressure reactions to the cold pressor test and the prediction of ischaemic heart disease: Data from the Caerphilly Study. J Epidemiol Community Health. 1998; 52(8): 528-529.

Mourot L, Bouhaddi M, Regnard J: Effects of the cold pressor test on cardiac autonomic control in normal subjects. Physiol Res. 2009; 58: 83-91.

Bierhaus A, Wolf J, Andrassy M, et al.: A mechanism converting psychosocial stress into mononuclear cell activation. Proc Natl Acad Sci USA. 2003; 100(4): 1920-1925.

Griffis C, Compton P, Doering L: The effect of pain on leukocyte cellular adhesion molecules. Biol Res Nurs. 2006; 7(4): 297-312.

Zhang LZ, Guo Z: Tramadol reduces myocardial infarct size and expression and activation of nuclear factor kappa B in acute myocardial infarction in rats. Eur J Anaesthesiol. 2009; 26(12): 1048-1055.

Wypasek E, Natorska J, Mazur AI, et al.: Toll-like receptor expression and NF-B activation in peritoneal leukocytes in morphine-mediated impairment of zymosan-induced peritonitis in Swiss mice. Arch Immunol Ther Exp (Warsz). 2012; 60(5); 373-382.

Jan WC, Chen CH, Hsu K, et al.: L-type calcium channels and mu-opioid receptors involved in mediating the anti-inflammatory effects of naloxone. J Surg Res. 2011; 167(2): 263-272.

Roy S, Cain KJ, Chapin RB, et al.: Morphine modulates NF kappa B activation in macrophages. Biochem Biophys Res Commun. 1998; 245(17): 392-396.

Happel C, Kutzler M, Rogers TJ: Opioid-induced chemokine expression requires NF-B activity: the role of PKCz. J Leukoc Biol. 2011; 89(2): 301-309.

Houghtling RA, Mellon RD, Tan RJ, et al.: Acute effects of morphine on blood lymphocyte proliferation and IL-6 levels. Ann N Y Acad Sci. 2000; 917: 771-777.

Pacifici R, di Carlo S, Bacosi A, et al.: Pharmacokinetics and cytokine production in heroin and morphine-treated mice. Int J Immunopharmacol. 2000; 22(8): 603-614.

Holan V, Zajicova A, Krulova M, et al.: Augmented production of proinflammatory cytokines and accelerated allotransplantation reactions in heroin-treated mice. Clin Exp Immunol. 2003; 132(1): 40-45.

Sacerdote P: Effects of in vitro and in vivo opioids on the production of IL-12 and IL-10 by murine macrophages. Ann N Y Acad Sci. 2003; 992: 129-140.

Kelschenbach J, Barke RA, Roy S: Morphine withdrawal contributes to TH cell differentiation by biasing cells toward the TH2 lineage. J Immunol. 2005; 175: 587-595.

Watkins LR, Hutchinson MR, Johnston IN, et al.: Glia: Novel counter-regulators of opioid analgesia. Trends Neurosci. 2005; 28(12): 661-669.

Reyes-Gibby CC, El Osta B, Spitz MR, et al.: The influence of tumor necrosis factor-alpha-308 G/A and IL-6-174 G/C on pain and analgesia response in lung cancer patients receiving supportive care. Cancer Epidemiol Biomarkers Prev. 2008; 17(11): 3262-3267.

Nelson CJ, Lysle DT: Morphine modulation of the contact hypersensitivity response: Characterization of immunological changes. Clin Immunol. 2001; 98(3): 370-377.

Wu Y, Wang Y, Zhan J: Effects of remifentanyl and fentanyl on LPS-induced cytokine release in human whole blood in vitro. Mol Biol Rep. 2009; 36(5): 1113-1117.

Rafati A, Taj SH, Azarpira N, et al.: Chronic morphine consumption increase allograft rejection rate in rat through inflammatory reactions. Iran Biomed J. 2011; 15(3): 85-91.

Hyejin J, Mei L, Seongheon L, et al.: Remifentanil attenuates human neutrophil activation induced by lipopolysaccharide. Immunopharmacol Immunotoxicol. 2013; 35(2): 264-271.

Joshi GP, Beck DE, Emerson RH, et al.: Defining new directions for more effective management of surgical pain in the United States: Highlights of the inaugural Surgical Pain Congress™. Am Surg. 2014; 80(3): 219-228.

Vadivelu N, Mitra S, Narayan D: Recent advances in postoperative pain management. Yale J Biol Med. 2010; 83(1): 11-25.

Viscusi ER, Pappagallo M: A review of opioids for in-hospital pain management. Hosp Pract (1995). 2012; 40(1): 149-159.

Published

03/01/2015

How to Cite

Compton, RN, PhD, P., C. Griffis, CRNA, PhD, E. Crabb Breen, PhD, M. Torrington, MD, R. Sadakane, BS, E. Tefera, MS, and M. R. Irwin, MD. “Opioid Treatment of Experimental Pain Activates Nuclear Factor-κB”. Journal of Opioid Management, vol. 11, no. 2, Mar. 2015, pp. 115-2, doi:10.5055/jom.2015.0261.