Identifying sociodemographic profiles of veterans at risk for high-dose opioid prescribing using classification and regression trees
DOI:
https://doi.org/10.5055/jom.2020.0599Keywords:
prescription opioids, social determinants of health, health disparities, machine learning, CARTAbstract
Objective: To identify sociodemographic profiles of patients prescribed high-dose opioids.
Design: Cross-sectional cohort study.
Setting/Patients: Veterans dually-enrolled in Veterans Health Administration and Medicare Part D, with ≥1 opioid prescription in 2012.
Main Outcome Measures: We identified five patient-level demographic characteristics and 12 community variables reflective of region, socioeconomic deprivation, safety, and internet connectivity. Our outcome was the proportion of veterans receiving >120 morphine milligram equivalents (MME) for ≥90 consecutive days, a Pharmacy Quality Alliance measure of chronic high-dose opioid prescribing. We used classification and regression tree (CART) methods to identify risk of chronic high-dose opioid prescribing for sociodemographic subgroups.
Results: Overall, 17,271 (3.3 percent) of 525,716 dually enrolled veterans were prescribed chronic high-dose opioids. CART analyses identified 35 subgroups using four sociodemographic and five community-level measures, with high-dose opioid prescribing ranging from 0.28 percent to 12.1 percent. The subgroup (n = 16,302) with highest frequency of the outcome included veterans who were with disability, age 18-64 years, white or other race, and lived in the Western Census region. The subgroup (n = 14,835) with the lowest frequency of the outcome included veterans who were without disability, did not receive Medicare Part D Low Income Subsidy, were >85 years old, and lived in communities within the second and sixth to tenth deciles of community public assistance.
Conclusions: Using CART analyses with sociodemographic and community-level variables only, we identified subgroups of veterans with a 43-fold difference in chronic high-dose opioid prescriptions. Interactions among disability, age, race/ ethnicity, and region should be considered when identifying high-risk subgroups in large populations.
References
Rudd RA: Increases in drug and opioid-involved overdose deaths—United States, 2010-2015. MMWR Morb Mortal Wkly Rep. 2016; 65(50-51): 1445-1452.
Rough K, Huybrechts K, Hernandez-Diaz S, et al.: Using prescription claims to detect aberrant behaviors with opioids: Comparison and validation of 5 algorithms. Pharmacoepidemiol Drug Saf. 2019; 28(1): 62-69.
Cochran G, Lo-Ciganic W, Gellad W, et al.: Prescription opioid quality measures applied among Pennsylvania Medicaid enrollees. J Manag Care Spec Pharm. 2018; 24(9): 875-885.
Edlund MJ, Martin BC, Fan MY, et al.: Risks for opioid abuse and dependence among recipients of chronic opioid therapy: Results from the TROUP Study. Drug Alcohol Depend. 2010; 112(1-2): 90-98. doi:10.1016/j.drugalcdep.2010.05.017.
Garg RK, Fulton-Kehoe D, Franklin GM: Patterns of opioid use and risk of opioid overdose death among Medicaid patients. Med Care. 2017; 55(7): 661-668. doi:10.1097/MLR.0000000000000738.
Gomes T, Mamdani MM, Dhalla IA, et al.: Opioid dose and drug-related mortality in patients with nonmalignant pain. Arch Intern Med. 2011; 171(7): 686-691. doi:10.1001/archinternmed.2011.117.
Dunn KM, Saunders KW, Rutter CM, et al.: Annals of internal medicine article opioid prescriptions for chronic pain and overdose. Ann Intern Med. 2010; 152: 85-92. doi:10.7326/0003-4819-152-2-201001190-00006.
Volkow ND, McLellan A, Thomas PD: Opioid abuse in chronic pain—misconceptions and mitigation strategies. N Engl J Med. 2016; 374(13): 1253-1263. doi:10.1056/NEJMra1507771.
Craven P, Cinar O, Fosnocht D, et al.: Prospective, 10-year evaluation of the impact of Hispanic ethnicity on pain management practices in the ED. Am J Emerg Med. 2014; 32(9): 1055-1059. doi:10.1016/j.ajem.2014.06.026.
Frenk SM, Porter KS, Paulozzi LJ: Prescription opioid analgesic use among adults: United States, 1999-2012. NCHS Data Brief. 2011; (189): 1-8. doi:10.1073/pnas.1518393112.
Pletcher MJ, Kertesz SG, Kohn MA, et al.: Trends in opioid prescribing by race/ethnicity for patients seeking care in US emergency. JAMA. 2008; 299(1): 70-78. doi:10.1001/jama.2007.64.PDF.
Ringwalt C, Roberts AW, Gugelmann H, et al.: Racial disparities across provider specialties in opioid prescriptions dispensed to medicaid beneficiaries with chronic noncancer pain. Pain Med (United States). 2015; 16(4): 633-640. doi:10.1111/pme.12555.
Singhal A, Tien YY, Hsia RY: Racial-ethnic disparities in opioid prescriptions at emergency department visits for conditions commonly associated with prescription drug abuse. PLoS One. 2016; 11(8): 1-14. doi:10.1371/journal.pone.0159224.
Volkow ND, McLellan TA, Cotto JH, et al.: Characteristics of opioid prescriptions in 2009. JAMA. 2011; 305(13): 1299-1301. doi:10.1001/jama.2011.401.
Campbell CI, Weisner C, LeResche L, et al.: Age and gender trends in long-term opioid analgesic use for noncancer pain. Am J Public Health. 2010; 100(12): 2541-2547. doi:10.2105/AJPH.2009.180646.
Centers for Disease Control and Prevention: Annual surveillance report of drug-related risks and outcomes. 2017. Available at https://www.cdc.gov/drugoverdose/pdf/pubs/2017-cdc-drugsurveillance-report.pdf. Accessed July 29, 2020.
Ciesielski T, Iyengar R, Bothra A, et al.: A tool to assess risk of de novo opioid abuse or dependence. Am J Med. 2016; 129(7): 699-705.e4. doi:10.1016/j.amjmed.2016.02.014.
Edlund MJ, Steffick D, Hudson T, et al.: Risk factors for clinically recognized opioid abuse and dependence among veterans using opioids for chronic non-cancer pain. Pain. 2007; 129(3): 355-362. doi:10.1016/j.pain.2007.02.014.
Han B, Compton WM, Jones CM, et al.: Nonmedical prescription opioid use and use disorders among adults aged 18 through 64 years in the United States, 2003-2013. JAMA. 2015; 314(14): 1468-1478. doi:10.1001/jama.2015.11859.
Nadpara PA, Joyce AR, Murrelle EL, et al.: Risk factors for serious prescription opioid-induced respiratory depression or overdose: Comparison of commercially insured and veterans health affairs populations. Pain Med (United States). 2018; 19(1): 79-96. doi:10.1093/pm/pnx038.
Mcdonald DC, Carlson KE, Mcdonald DC: The ecology of prescription opioid abuse in the USA: Geographic variation in patients’ use of multiple prescribers (“doctor shopping”) HHS public access. Pharmacoepidemiol Drug Saf. 2014; 23(12): 1258-1267. doi:10.1002/pds.3690.
Spiller H, Lorenz D, Bailey E, et al.: Epidemiological trends in abuse and misuse of prescription opioids. J Addict Dis. 2009; 28(2): 130-136.
Webster BS, Cifuentes M, Verma S, et al.: Geographic variation in opioid prescribing for acute, work-related, low back pain and associated factors: A multilevel analysis. Am J Ind Med. 2009; 52(2): 162-171. doi:10.1002/ajim.20655.
McDonald DC, Carlson K, Izrael D: Geographic variation in opioid prescribing in the U.S. J Pain. 2012; 13(10): 988-996. doi:10.1016/j.jpain.2012.07.007.
Dasgupta N, Beletsky L, Ciccarone D: Opioid crisis: No easy fix to its social and economic determinants. Am J Public Health. 2018; 108(2): 182-186. doi:10.2105/AJPH.2017.304187.
Grigoras CA, Karanika S, Velmahos E, et al.: Correlation of opioid mortality with prescriptions and social determinants: A cross-sectional study of Medicare enrollees. Drugs. 2018; 78(1): 111-121. doi:10.1007/s40265-017-0846-6.
Wright ER, Kooreman HE, Greene MS, et al.: The iatrogenic epidemic of prescription drug abuse: County-level determinants of opioid availability and abuse. Drug Alcohol Depend. 2014; 138(1): 209-215. doi:10.1016/j.drugalcdep.2014.03.002.
Breiman L, Friedman J, Stone CJ, et al.: CART: Classification and Regression Trees. New York: Chapman & Hall; 1984. doi:10.1201/9781420089653.ch10.
Von Elm E, Altman D, Egger M, et al.: STROBE initiative. The strengthening the reporting of observational studies in epidemiology (STROBE) statement: Guidelines for reporting observational studies. Ann Intern Med. 2007; 147(8): 573-577.
Gellad WF, Thorpe JM, Zhao X, et al.: Impact of dual use of Department of Veterans Affairs and Medicare Part D drug benefits on potentially unsafe opioid use. Am J Public Health. 2018; 108(2): 248-255. doi:10.2105/AJPH.2017.304174.
Hynes D, Koelling K, Stroupe K, et al.: Veterans’ access to and use of medicare and veterans affairs health care. Med Care. 2007; 45(3): 214-223.
Administration VH, Deputy A, Secretary U: VHA Dir 1153, Access to Centers for Medicare and Medicaid Services (CMS) Data for VHA Users within the VA Information Technology (IT) Systems. 2016.
Eicheldinger C, Bonito A: More accurate racial and ethnic codes for Medicare administrative data. Health Care Financ Rev. 2008; 29(3): 27-42. doi:hcfr-29-03-027 [pii].
USDA: Agriculture USD of rural-urban commuting area codes. Available at https://www.ers.usda.gov/data-products/ruralurban-commuting-area-codes.aspx. Accessed October 1, 2019.
Health Resources & Services Administration (HRSA): Area health resources files. Available at https://datawarehouse.hrsa.gov/Topics/Ahrf.aspx. Accessed January 6, 2017.
United States Department of Justice, Federal Bureau of Investigation: Uniform Crime Reporting Program Data: County-Level Detailed Arrest and Offense Data, United States, 2012. Interuniversity Consortium for Political and Social Research [distributor], 2014. doi:10.3886/ICPSR35019.v1.
Rains SA: Health at High Speed Broadband Internet Access, Health Communication, and the Digital Divide. Communic Res. 2008;35(3):283-297.
Federal Communications Commission: Form 477 Census tract data on internet access services. 2012. Available at https://www.fcc.gov/general/form-477-census-tract-data-internetaccess-services. Accessed July 29, 2020.
CMS: Medicaid C for M and opioid morphine equivalent conversion factors. 2014. Available at https://www.cms.gov/Medicare/Prescription-Drug-Coverage/PrescriptionDrugCovContra/Downloads/Opioid-Morphine-EQConversion-Factors-March-2015.pdf. Accessed July 29, 2020.
Pharmacy Quality Alliance: Pharmacy quality alliance performance measures. 2017. Available at http://pqaalliance.org/measures/default.asp. Accessed January 6, 2017.
Burman P: A comparative study of ordinary cross-validation, v-fold cross-validation and the repeated learning-testing methods. Biometrika. 1989; 76(3): 503-514.
Andridge R, Little R: A review of hot deck imputation for survey non-response. Int Stat Rev. 2011; 78(1): 40-64. doi:10.1111/j.1751-5823.2010.00103.x.A.
Särndal CE, Swensson B, Wretman J: Model Assisted Survey Sampling. New York: Springer-Verlag; 1992.
Wilson N, Kariisa M, Seth P, et al.: Drug and opioid-involved overdose deaths—United States, 2017-2018. MMWR Morb Mortal Wkly Rep. 2020; 69: 290-297.
Hudgins J, Porter J, Monuteaux M, et al.: Prescription opioid use and misuse among adolescents and young adults in the United States: A national survey study. PLoS Med. 2019; 16(11): e1002922.
Goodwin JS, Kuo Y, Brown D, et al.: Association of chronic opioid use with presidential voting patterns in US counties in 2016. JAMA Netw Open. 2018; 1(2): e180450. doi:10.1001/jamanetworkopen.2018.0450.
Akwo E, Kabagambe E, Harrell F: Neighborhood deprivation predicts heart failure risk in a low-income population of blacks and whites in the Southeastern United States. Cardiovasc Qual Outcomes. 2018; 11(1): e004052. doi:10.1161/CIRCOUTCOMES.117.004052.
Hawkins J, Van Horn M, Arthur M: Community variation in risk and protective factors and substance use outcomes. Prev Sci. 2004; 5(4): 213-220.
Morden N, Munson J, Colla C, et al.: Prescription opioid use among disabled medicare beneficiaries: Intensity, trends and regional variation Nancy. Med Care. 2014; 52(9): 852-859. doi:10.3174/ajnr.A1256.Functional.
Lemon SC, Ph D, Roy J, et al.: Classification and regression tree analysis in public health: Methodological review and comparison with logistic regression. 2003; 26(3): 172-181.
Kurti AN, Keith DR, Noble A, et al.: Characterizing the intersection of Co-occurring risk factors for illicit drug abuse and dependence in a U.S. nationally representative sample. Prev Med (Baltim). 2016; 92: 118-125. doi:10.1016/j.ypmed.2016.09.030.
McKenzie DP, McFarlane AC, Creamer M, et al.: Hazardous or harmful alcohol use in Royal Australian Navy veterans of the 1991 Gulf War: Identification of high risk subgroups. Addict Behav. 2006; 31(9): 1683-1694. doi:10.1016/j.addbeh.2005.12.027.
Fudin J, Cleary JP, Schatman ME: The MEDD myth: The impact of pseudoscience on pain research and prescribing-guideline development. J Pain Res. 2016; 9: 153-156.
Published
How to Cite
Issue
Section
License
Copyright 2005-2024, Weston Medical Publishing, LLC
All Rights Reserved