Effects of buprenorphine buccal film and oral oxycodone on pupil diameter in a respiratory study

Authors

DOI:

https://doi.org/10.5055/jom.2022.0708

Keywords:

pupillometry, opioids, abuse, respiratory depression

Abstract

Objective: Evaluate the pupillary-constricting effects following administration of buprenorphine buccal film (BBF) and immediate-release (IR) oxycodone.

Design: A double-blind, double-dummy, six-treatment, six-period, placebo-controlled, randomized crossover study.

Setting: Single-center, phase 1 exploratory pharmacodynamics.

Participants: Healthy individuals who self-identify as recreational opioid users, confirmed via a naloxone challenge test on day 1.

Interventions: Placebo: BBF 300, 600, and 900 mcg and IR oxycodone 30 and 60 mg.

Main outcome measure: Minute ventilation (measured by the ventilator response to hypercapnia) and pupil diameter (determined via standard pupillometry) were assessed predose and at 0.5, 1, 1.5, 2, 2.5, 3, and 4 hours post-dose.

Results: Change from baseline in minute ventilation was moderately correlated with change from baseline in pupil diameter during treatment with BBF (Pearson's r = 0.38-0.40; p 0.0011) or oxycodone (Pearson's r = 0.34-0.37; p 0.005). The initial onset of significant (p < 0.05) pupil constriction relative to placebo occurred at 2, 1.5, and 1 hour after dosing with BBF 300, 600, and 900 mcg, respectively, and at 0.5 hours after dosing with oxycodone 30 or 60 mg.

Conclusions: Although BBF and IR oxycodone achieved similar levels of pupil constriction, there was a delayed miosis seen with BBF relative to that found with oxycodone.

 

Author Biographies

Lynn Webster, MD

PRA Health Sciences, Salt Lake City, Utah

Jacqueline Cater, PhD

PRA Health Sciences, Salt Lake City, Utah

Thomas Smith, MD

BioDelivery Sciences International, Inc., Raleigh, North Carolina

References

Marshall B, Bland MK, Hulla R, et al.: Considerations in addressing the opioid epidemic and chronic pain within the USA. Pain Manag. 2019; 9(2): 131-138. DOI: 10.2217/pmt-2018-0070.

Dolinak D: Opioid toxicity. Acad Forensic Pathol. 2017; 7(1): 19-35. DOI: 10.23907/2017.003.

Pattinson KT: Opioids and the control of respiration. Br J Anaesth. 2008; 100(6): 747-758. DOI: 10.1093/bja/aen094.

Bauman V, Lopez I: Bloomberg Businessweek. Available at https://www.bloomberg.com/news/articles/2021-02-20/covidpandemic-has-only-made-the-opioid-crisis-worse. Accessed February 25, 2021.

Centers for Disease Control and Prevention: Overdose deaths accelerating during COVID-19. Available at https://www.cdc.gov/media/releases/2020/p1218-overdose-deaths-covid-19.html#:~:text=Over%2081%2C000%20drug%20overdose%20deaths,Control%20and%20Prevention%20(CDC). Accessed February 11, 2021.

Niles JK, Gudin J, Radcliff J, et al.: The opioid epidemic within the COVID-19 pandemic: Drug testing in 2020. Popul Health Manag. 2021; 24(S1): S43-S51. DOI: 10.1089/pop.2020.0230.

Larson MD, Behrends M: Portable infrared pupillometry: A review. Anesth Analg. 2015; 120(6): 1242-1253. DOI: 10.1213/ANE.0000000000000314.

Larson MD: Mechanism of opioid-induced pupillary effects. Clin Neurophysiol. 2008; 119(6): 1358-1364. DOI: 10.1016/j.clinph.2008.01.106.

Vaughan CW, Ingram SL, Connor MA, et al.: How opioids inhibit GABA-mediated neurotransmission. Nature. 1997; 390(6660): 611-614. DOI: 10.1038/37610.

Bachmutsky I, Wei XP, Kish E, et al. Opioids depress breathing through two small brainstem sites. Elife. 2020; 9. DOI: 10.7554/eLife.52694.

Le Merrer J, Becker JA, Befort K, et al.: Reward processing by the opioid system in the brain. Physiol Rev. 2009; 89(4): 1379-1412. DOI: 10.1152/physrev.00005.2009.

Mitsi V, Zachariou V: Modulation of pain, nociception, and analgesia by the brain reward center. Neuroscience. 2016; 338: 81-92. DOI: 10.1016/j.neuroscience.2016.05.017.

Kollars JP, Larson MD: Tolerance to miotic effects of opioids. Anesthesiology. 2005; 102(3): 701. DOI: 10.1097/00000542-200503000-00047.

Barvais L, Engelman E, Eba JM, et al.: Effect site concentrations of remifentanil and pupil response to noxious stimulation. Br J Anaesth. 2003; 91(3): 347-352. DOI: 10.1093/bja/aeg178.

Macleod DB, Habib AS, Ikeda K, et al.: Inhaled fentanyl aerosol in healthy volunteers: Pharmacokinetics and pharmacodynamics. Anesth Analg. 2012; 115(5): 1071-1077. DOI: 10.1213/ANE.0b013e3182691898.

Skarke C, Darimont J, Schmidt H, et al.: Analgesic effects of morphine and morphine-6-glucuronide in a transcutaneous electrical pain model in healthy volunteers. Clin Pharmacol Ther. 2003; 73(1): 107-121. DOI: 10.1067/mcp.2003.5.

Schoedel KA, McMorn S, Chakraborty B, et al.: Positive and negative subjective effects of extended-release oxymorphone versus controlled-release oxycodone in recreational opioid users. J Opioid Manag. 2011; 7(3): 179-192.

Walker DJ, Zacny JP: Subjective, psychomotor, and analgesic effects of oral codeine and morphine in healthy volunteers. Psychopharmacology (Berl). 1998; 140(2): 191-201. DOI: 10.1007/s002130050757.

Setnik B, Sommerville K, Goli V, et al.: Assessment of pharmacodynamics effects following oral administration of crushed morphine sulfate and naltrexone hydrochloride extended-release capsules compared with crushed morphine sulfate controlled-release tablets and placebo in nondependent recreational opioid users. Pain Med. 2013; 14(8): 1173-1186. DOI: 10.1111/pme.12148.

Webster LR, Johnson FK, Stauffer J, et al.: Impact of intravenous naltrexone on intravenous morphine-induced high, drug liking, and euphoric effects in experienced, nondependent male opioid users. Drugs R D. 2011; 11(3): 259-275. DOI: 10.2165/11593390-000000000-00000.

Kopecky EA, Fleming AB, Levy-Cooperman N, et al.: Oral human abuse potential of oxycodone DETERx® (Xtampza® ER). J Clin Pharmacol. 2017; 57(4): 500-512. DOI: 10.1002/jcph.833.

Shram MJ, Silverman B, Ehrich E, et al.: Use of remifentanil in a novel clinical paradigm to characterize onset and duration of opioid blockade by samidorphan, a potent mu-receptor antagonist. J Clin Psychopharmacol. 2015; 35(3): 242-249. DOI: 10.1097/JCP.0000000000000320.

Darwish M, Bond M, Ma Y, et al.: Abuse potential with oral route of administration of a hydrocodone extended-release tablet formulated with abuse-deterrence technology in nondependent, recreational opioid users. Pain Med. 2017; 18(1): 61-77. DOI: 10.1093/pm/pnw122.

Friedmann N, Marsman MR, de Kater AW, et al.: A nasal abuse potential randomized clinical trial of REMOXY(R) ER, a high-viscosity extended-release oxycodone formulation. J Opioid Manag. 2018; 14(6): 437-443.

Mickle TC, Guenther SM, Barrett AC, et al.: Pharmacokinetics and abuse potential of benzhydrocodone, a novel prodrug of hydrocodone, after intranasal administration in recreational drug users. Pain Med. 2018; 19(12): 2438-2449. DOI: 10.1093/pm/pnx247.

Morton TL, Devarakonda K, Kostenbader K, et al.: Correlation of subjective effects with systemic opioid exposure from fixed-dose combinations of oxycodone/acetaminophen in recreational users of prescription drugs. Pain Med. 2016; 17(3): 539-550.

Webster L, Henningfield J, Buchhalter AR, et al.: Human abuse potential of the new opioid analgesic molecule NKTR-181 compared with oxycodone. Pain Med. 2018; 19(2): 307-318. DOI: 10.1093/pm/pnw344.

Webster LR, Kopecky EA, Smith MD, et al.: A randomized, double-blind, double-dummy study to evaluate the intranasal human abuse potential and pharmacokinetics of a novel extended-release abuse-deterrent formulation of oxycodone. Pain Med. 2016; 17(6): 1112-1130.

Webster LR, Rolleri RL, Pixton GC, et al.: Randomized, double-blind, placebo-controlled and active-controlled study to assess the relative abuse potential of oxycodone HCl-niacin tablets compared with oxycodone alone in nondependent, recreational opioid users. Subst Abuse Rehabil. 2012; 3: 101-113. DOI: 10.2147/SAR.S33080.

Webster LR, Smith MD, Lawler J, et al.: Human abuse potential of an abuse-deterrent (AD), extended-release (ER) morphine product candidate (morphine-ADER injection-molded tablets) vs extended-release morphine administered intranasally in nondependent recreational opioid users. Pain Med. 2017; 18(9): 1695-1705.

Rollins MD, Feiner JR, Lee JM, et al.: Pupillary effects of high-dose opioid quantified with infrared pupillometry. Anesthesiology. 2014; 121(5): 1037-1044. DOI: 10.1097/ALN.0000000000000384.

Dahan A, Yassen A, Bijl H, et al.: Comparison of the respiratory effects of intravenous buprenorphine and fentanyl in humans and rats. Br J Anaesth. 2005; 94(6): 825-834. DOI: 10.1093/bja/aei145.

Dahan A, Yassen A, Romberg R, et al.: Buprenorphine induces ceiling in respiratory depression but not in analgesia. Br J Anaesth. 2006; 96(5): 627-632. DOI: 10.1093/bja/ael051.

Webster LR, Hansen E, Cater J, et al.: A phase I placebo-controlled trial comparing the effects of buprenorphine buccal film and oral oxycodone hydrochloride administration on respiratory drive. Adv Ther. 2020; 37(11): 4685-4696. DOI: 10.1007/s12325-020-01481-0.

Rauck RL, Potts J, Xiang Q, et al.: Efficacy and tolerability of buccal buprenorphine in opioid-naive patients with moderate to severe chronic low back pain. Postgrad Med. 2016; 128(1): 1-11. DOI: 10.1080/00325481.2016.1128307.

Gimbel J, Spierings ELH, Katz N, et al.: Efficacy and tolerability of buccal buprenorphine in opioid-experienced patients with moderate to severe chronic low back pain: Results of a phase 3, enriched enrollment, randomized withdrawal study. Pain. 2016; 157(11): 2517-2526. DOI: 10.1097/j.pain.0000000000000670.

Jasinski DR, Pevnick JS, Griffith JD: Human pharmacology and abuse potential of the analgesic buprenorphine: A potential agent for treating narcotic addiction. Arch Gen Psychiatry. 1978; 35(4): 501-516. DOI: 10.1001/archpsyc.1978.01770280111012.

Yokell MA, Zaller ND, Green TC, et al.: Buprenorphine and buprenorphine/naloxone diversion, misuse, and illicit use: An international review. Curr Drug Abuse Rev. 2011; 4(1): 28-41.

Belbuca [package insert]. Raleigh, NC: BioDelivery Sciences International Inc., 2019.

United States Drug Enforcement Administration: Drug scheduling. Available at https://www.dea.gov/drug-scheduling. Accessed December 15, 2020.

Zamani N, Buckley NA, Hassanian-Moghaddam H: Buprenorphine to reverse respiratory depression from methadone overdose in opioid-dependent patients: A prospective randomized trial. Crit Care. 2020; 24(1): 44. DOI: 10.1186/s13054-020-2740-y.

Khanna IK, Pillarisetti S: Buprenorphine—An attractive opioid with underutilized potential in treatment of chronic pain. J Pain Res. 2015; 8: 859-870.

Rorick-Kehn LM, Witcher JW, Lowe SL, et al.: Determining pharmacological selectivity of the kappa opioid receptor antagonist LY2456302 using pupillometry as a translational biomarker in rat and human. Int J Neuropsychopharmacol. 2014; 18(2): pyu036.

McAnany JJ, Smith BM, Garland A, et al.: iPhone-based pupillometry: A novel approach for assessing the pupillary light reflex. Optom Vis Sci. 2018; 95(10): 953-958. DOI: 10.1097/OPX.0000000000001289.

Downloads

Published

03/01/2022

How to Cite

Webster, MD, L., J. Cater, PhD, and T. Smith, MD. “Effects of Buprenorphine Buccal Film and Oral Oxycodone on Pupil Diameter in a Respiratory Study”. Journal of Opioid Management, vol. 18, no. 2, Mar. 2022, pp. 181-90, doi:10.5055/jom.2022.0708.