Impact of opioids on oxidative status and related signaling pathways: An integrated view

Authors

  • Maryam Zahmatkesh, PhD
  • Mehri Kadkhodaee, PharmD, PhD
  • Ali Salarian, MD, PhD student
  • Behjat Seifi, PhD
  • Soheila Adeli, PhD

DOI:

https://doi.org/10.5055/jom.2017.0392

Keywords:

opioids, oxidative stress, antioxidant, signaling, reactive oxygen species

Abstract

Background: Opioids produce reactive oxygen species (ROS) which are highly reactive molecules that damage cells and tissues, and are suggested to contribute to the opioid use disorders. Thus, antioxidant supplementation might improve the disturbance in redox (oxidation-reduction) homeostasis. However, randomized trials on antioxidant therapy have not shown beneficial effects.

Objectives: The purpose of this review is to shed lights on the oxidative changes resulting from opioid use and to highlight the unanswered questions regarding oxidative profile in an effort to provide a comprehensive view of different aspects of an efficient antioxidant therapy in clinical settings.

Methods: The studies were identified and gathered from the PubMed database over the past 16 years (2000-2016). Our search results were limited to articles in English, both animals and human and in vitro and in vivo studies. A total of 50 full text articles were reviewed and summarized.

Results: Opioids elevate the level of ROS and decrease the function of enzymatic antioxidants such as superoxide dismutase, catalase, and glutathione peroxidase. They increase the risk of vitamin deficiency and modify gene expression of target cells through ROS production. The effects of opioids on their target cells are exerted through different way and various mechanisms.

Conclusion: Opioids modulate the redox homeostasis; therefore, understanding the profile of oxidative changes in individuals with opioid use disorder could be of significant benefits in the clinical setting, to help with selection of an efficient antioxidant therapy and diminishing oxidative damage.

Author Biographies

Maryam Zahmatkesh, PhD

Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Research Center of Behavioral and Cognitive Sciences, Tehran University of Medical Sciences, Tehran, Iran

Mehri Kadkhodaee, PharmD, PhD

Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran

Ali Salarian, MD, PhD student

Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran

Behjat Seifi, PhD

Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran

Soheila Adeli, PhD

Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran

References

Christie, MJ: Cellular neuroadaptations to chronic opioids: Tolerance, withdrawal and addiction. Br J pharmacol. 2008; 154(2): 384-396.

Pathan H, Williams J: Basic opioid pharmacology: An update. Br J Pain. 2012; 6(1): 11-16.

Ujcikova H, Brejchova J, Vosahlikova M, et al.: Opioid-receptor (OR) signaling cascades in rat cerebral cortex and model cell lines: The role of plasma membrane structure. Physiol Res. 2014; 63(suppl 1): S165-S176.

Cox BM, Christie MJ, Devi L, et al.: Challenges for opioid receptor nomenclature: IUPHAR Review 9. Br J Pharmacol. 2015; 172(2): 317-323.

Mannelli P, Patkar A, Rozen S, et al.: Opioid use affects antioxidant activity and purine metabolism: Preliminary results. Human Psychopharmacol. 2009; 24(8): 666-675.

Kovatsi L, Njau S, Nikolaou K, et al.: Evaluation of prooxidant-antioxidant balance in chronic heroin users in a single assay: An identification criterion for antioxidant supplementation. Am J Drug Alcohol Abuse. 2010; 36(4): 228-232.

Skrabalova J, Drastichova Z, Novotny J: Morphine as a potential oxidative stress-causing agent. Mini Rev Organ Chem. 2013; 10(4): 367-372.

Cai Y, Yang L, Hu G, et al.: Regulation of morphine-induced synaptic alterations: Role of oxidative stress, ER stress, and autophagy. J Cell Biol. 2016; 215(2): 245-258.

Lauro F, Giancotti LA, Ilari S, et al.: Inhibition of spinal oxidative stress by bergamot polyphenolic fraction attenuates the development of morphine induced tolerance and hyperalgesia in mice. PLoS One. 2016; 11(5): e0156039.

Yun J, Oliynyk S, Lee Y, et al.: Ajoene restored behavioral patterns and liver glutathione level in morphine treated C57BL6 mice. Archive Pharm Res. 2017; 40(1): 106-111.

Carocho M, Ferreira IC: A review on antioxidants, prooxidants and related controversy: Natural and synthetic compounds, screening and analysis methodologies and future perspectives. Food Chem Toxicol. 2013; l(51): 15-25.

Kadkhodaee M, Hemmati M, Zahmatkesh M, et al.: Assessment of plasma antioxidant status in hemodialysis patients. Ther Apher Dial. 2008; 12(2): 147-151.

Zahmatkesh M, Kadkhodaee M, Mahdavi-Mazdeh M, et al.: Oxidative stress status in renal transplant recipients. Exp Clin Transpl. 2010; 8(1): 38-44.

Al-Hasani R, Bruchas MR: Molecular mechanisms of opioid receptor-dependent signaling and behavior. Anesthesiology. 2011; 115(6): 1363-1381.

Nabipour S, Ayu Said M, Hussain Habil M: Burden and nutritional deficiencies in opiate addiction- systematic review article. Iran J Public Health. 2014; 43(8): 1022-1032.

Truong TH, Carroll KS: Redox regulation of protein kinases. Crit Rev Biochem Mol Biol. 2013; 48(4): 332-356.

Xu B, Wang Z, Li G, et al.: Heroin-administered mice involved in oxidative stress and exogenous antioxidant-alleviated withdrawal syndrome. Basic Clin Pharmacol Toxicol. 2006; 99(2): 153-161.

Womersley JS, Uys JD: S-Glutathionylation and redox protein signaling in drug addiction. Prog Mol Biol Transl Sci. 2016; 137: 87-121.

Farooqui T, Farooqui AA (eds.): Oxidative Stress in Vertebrates and Invertebrates: Molecular Aspects of Cell Signaling. Hoboken, NJ: John Wiley, 2012.

Bjelakovic G, Nikolova D, Gluud LL, et al.: Mortality in randomized trials of antioxidant supplements for primary and secondary prevention: Systematic review and meta-analysis. JAMA. 2007; 297(8): 842-857.

Bjelakovic G, Nikolova D, Gluud LL, et al.: Antioxidant supplements for prevention of mortality in healthy participants and patients with various diseases. Cochrane Database Syst Rev. 2012; 14(3): CD007176.

Dave RS, Khalili K: Morphine treatment of human monocyte-derived macrophages induces differential miRNA and protein expression: Impact on inflammation and oxidative stress in the central nervous system. J Cell Biochem. 2010; 110(4): 834-845.

Koch T, Seifert A, Wu DF, et al.: mu-opioid receptor-stimulated synthesis of reactive oxygen species is mediated via phospholipase D2. J Neurochem. 2009; 110(4): 1288-1296.

Zhou J, Li Y, Yan G, et al.: Protective role of taurine against morphine-induced neurotoxicity in C6 cells via inhibition of oxidative stress. Neurotox Res. 2011; 20(4): 334-342.

Raut A, Ratka A: Oxidative damage and sensitivity to nociceptive stimulus and opioids in aging rats. Neurobiol Aging. 2009; 30(6): 910-919.

Turchan-Cholewo J, Dimayuga FO, Gupta S, et al.: Morphine and HIV-Tat increase microglial-free radical production and oxidative stress: Possible role in cytokine regulation. J Neurochem. 2009; 108(1): 202-215.

Rozisky J, Laste G, de Macedo I, et al.: Neonatal morphine administration leads to changes in hippocampal BDNF levels and antioxidant enzyme activity in the adult life of rats. Neurochem Res. 2013; 38(3): 494-503.

Trivedi M, Shah J, Hodgson N, et al.: Morphine induces redox-based changes in global dna methylation and retrotransposon transcription by inhibition of excitatory amino acid transporter type 3–mediated cysteine uptake. Mol Pharmacol. 2014; 85(5): 747-757.

Samikkannu T, Ranjith D, Rao KV, et al.: HIV-1 gp120 and morphine induced oxidative stress: Role in cell cycle regulation. Front Microbiol. 2015; 6: 614.

Lam CF, Liu YC, Tseng FL, et al.: High-dose morphine impairs vascular endothelial function by increased production of superoxide anions. Anesthesiology. 2007; 106(3): 532-537.

Abdel-Zaher AO, Mostafa MG, Farghaly HS, et al.: Role of oxidative stress and inducible nitric oxide synthase in morphine- induced tolerance and dependence in mice. Effect of alpha-lipoic acid. Behav Brain Res. 2013; 247: 17-26.

Samarghandian S, Afshari R, Farkhondeh T: Effect of long-term treatment of morphine on enzymes, oxidative stress indices and antioxidant status in male rat liver. Int J Clin Exp Med. 2014; 7(5): 1449-1453.

Guzmán DC, Vázquez IE, Brizuela NO, et al.: Assessment of oxidative damage induced by acute doses of morphine sulfate in postnatal and adult rat brain. Neurochem Res. 2006; 31(4): 549-554.

Motaghinejad M, Karimian M, Motaghinejad O, et al.: Protective effects of various dosage of Curcumin against morphine induced apoptosis and oxidative stress in rat isolated hippocampus. Pharmacol Rep. 2015; 67(2): 230-235.

Özmen I·, Nazırog˘lu M, Alici H, et al.: Spinal morphine administration reduces the fatty acid contents in spinal cord and brain by increasing oxidative stress. Neurochem Res. 2007; 32(1): 19-25.

Goudas LC, Langlade A, Serrie A, et al.: Acute decreases in cerebrospinal fluid glutathione levels after intracerebroventricular morphine for cancer pain. Anesth Analg. 1999; 89(5): 1209-1215.

Pan J, Zhang Q, Zhang Y, et al.: Oxidative stress in heroin administered mice and natural antioxidants protection. Life Sci. 2005; 77(2): 183-193.

Zhou J, Si P, Ruan Z, et al.: Primary studies on heroin abuse and injury induced by oxidation and lipoperoxidation. Chin Med J. 2001; 114(3): 297-302.

Gutowicz M, Kazmierczak B, Baranczyk-Kuzma A: The influence of heroin abuse on glutathione-dependent enzymes in human brain. Drug Alcohol Depend. 2011; 113(1): 8-12.

Oliveira MT, Rego AC, Morgadinho MT, et al.: Toxic effects of opioid and stimulant drugs on undifferentiated PC12 cells. Ann N Y Acad Sci. 2002; 965(1): 487-496.

Ghazavi A, Mosayebi G, Solhi H, et al.: Serum markers of inflammation and oxidative stress in chronic opium (Taryak) smokers. Immunol Lett. 2013; 153(1-2): 22-26.

Safarinejad MR, Asgari SA, Farshi A, et al.: The effects of opiate consumption on serum reproductive hormone levels, sperm parameters, seminal plasma antioxidant capacity and sperm DNA integrity. Reprod Toxicol. 2013; 36: 18-23.

Qiusheng Z, Yuntao Z, Rongliang Z, et al.: Effects of verbascoside and luteolin on oxidative damage in brain of heroin treated mice. Die Pharmazie. 2005; 60(7): 539-543.

Zhou C, Assem M, Tay JC, et al.: Steroid and xenobiotic receptor and vitamin D receptor crosstalk mediates CYP24 expression and drug-induced osteomalacia. J Clin Invest. 2006; 116(6): 1703-1712.

Payabvash S, Kiumehr S, Nezami BG, et al.: Endogenous opioids modulate hepatocyte apoptosis in a rat model of chronic cholestasis: The role of oxidative stress. Liver Int. 2007; 27(4): 538-547.

Hsiao PN, Chang MC, Cheng WF, et al.: Morphine induces apoptosis of human endothelial cells through nitric oxide and reactive oxygen species pathways. Toxicology. 2009; 256(1-2): 83-91.

Yoshida Y, Umeno A, Shichiri M: Lipid peroxidation biomarkers for evaluating oxidative stress and assessing antioxidant capacity in vivo. J Clin Biochem Nutr. 2013; 52(1): 9-16.

Kim TW, Alford DP, Holick MF, et al.: Low vitamin d status of patients in methadone maintenance treatment. J Addiction Med. 2009; 3(3): 134-138.

Tarcin O, Yavuz DG, Ozben B, et al.: Effect of vitamin D deficiency and replacement on endothelial function in asymptomatic subjects. J Clin Endocrinol Metab. 2009; 94(10): 4023-4030.

Jablonski KL, Chonchol M, Pierce GL, et al.: 25-Hydroxyvitamin D deficiency is associated with inflammation-linked vascular endothelial dysfunction in middle-aged and older adults. Hypertension. 2011; 57(1): 63-69.

Codoner-Franch P, Tavarez-Alonso S, Simo-Jorda R, et al,: Vitamin D status is linked to biomarkers of oxidative stress, inflammation, and endothelial activation in obese children. J Pediatrics. 2012; 161(5): 848-854.

Evangelou A, Kalfakakou V, Georgakas P, et al.: Ascorbic acid (vitamin C) effects on withdrawal syndrome of heroin abusers. In Vivo. 2000; 14(2): 363-366.

Ibi M, Matsuno K, Matsumoto M, et al.: Involvement of NOX1/NADPH oxidase in morphine-induced analgesia and tolerance. J Neurosci. 2011; 31(49): 18094-18103.

Gupta K, Kshirsagar S, Chang L, et al.: Morphine stimulates angiogenesis by activating proangiogenic and survival-promoting signaling and promotes breast tumor growth. Cancer Res. 2002; 62(15): 4491-4498.

Liu L, Zhu J, Zhou L, et al.: RACK1 promotes maintenance of morphine-associated memory via activation of an ERKCREB dependent pathway in hippocampus. Sci Rep. 2016; 2(6): 20183.

Xie N, Li H, Wei D, et al.: Glycogen synthase kinase-3 and p38 MAPK are required for opioid-induced microglia apoptosis. Neuropharmacology. 2010; 59(6): 444-451.

Gross ER, Hsu AK, Gross GJ: The JAK/STAT pathway is essential for opioid-induced cardioprotection: JAK2 as a mediator of STAT3, Akt, and GSK-3. Am J Physiol Heart Circul Physiol. 2006; 291(2): 827-834.

Yin D, Woodruff M, Zhang Y, et al.: Morphine promotes Jurkat cell apoptosis through pro-apoptotic FADD/P53 and antiapoptotic PI3K/Akt/NF-kappaB pathways. J Neuroimmunol. 2006; 174(1-2): 101-107.

Bhat RS, Bhaskaran M, Mongia A, et al.: Morphine-induced macrophage apoptosis: Oxidative stress and strategies for modulation. J Leukocyte Biol. 2004; 75(6): 1131-1138.

Cunha-Oliveira T, Rego AC, Oliveira CR: Cellular and molecular mechanisms involved in the neurotoxicity of opioid and psychostimulant drugs. Brain Res Rev. 2008; 58(1): 192-208.

Cunha TM, Roman-Campos D, Lotufo CM, et al.: Morphine peripheral analgesia depends on activation of the PI3K/AKT/ nNOS/NO/KATP signaling pathway. Proc Natl Acad Sci U S A. 2010; 107(9): 4442-4447.

Cao JL, He JH, Ding HL, et al.: Activation of the spinal ERK signaling pathway contributes naloxone-precipitated withdrawal in morphine-dependent rats. Pain. 2005; 118(3): 336-349.

Russo SJ, Bolanos CA, Theobald DE, et al.: IRS2-Akt pathway in midbrain dopamine neurons regulates behavioral and cellular responses to opiates. Nat Neurosci. 2007; 10(1): 93-99.

Moron JA, Gullapalli S, Taylor C, et al.: Modulation of opiate-related signaling molecules in morphine-dependent conditioned behavior: Conditioned place preference to morphine induces CREB phosphorylation. Neuropsychopharmacology. 2010; 35(4): 955-966.

Wen A, Guo A, Chen YL: Mu-opioid signaling modulates biphasic expression of TrkB and IkappaBalpha genes and neurite outgrowth in differentiating and differentiated human neuroblastoma cells. Biochem Biophys Res Commun. 2013; 432(4): 638-642.

Zheng H, Loh HH, Law PY: -Arrestin-dependent μ-opioid receptor-activated extracellular signal-regulated kinases (ERKs) translocate to nucleus in contrast to G protein-dependent ERK activation. Mol Pharmacol. 2008; 73(1): 178-190.

Anselmi L, Huynh J, Duraffourd C, et al.: Activation of mu opioid receptors modulates inflammation in acute experimental colitis. Neurogastroenterol Motility. 2015; 27(4): 509-523.

Duraffourd C, Kumala E, Anselmi L, et al.: Opioid-induced mitogen-activated protein kinase signaling in rat enteric neurons following chronic morphine treatment. PloS One. 2014; 9(10): e110230.

Lai B, Pu H, Cao Q, et al.: Activation of caspase-3 and c-Jun NH 2-terminal kinase signaling pathways involving heroininduced neuronal apoptosis. Neurosci. Lett. 2011; 502(3): 209-213.

Tan M, Li Z, Ma S, et al.: Heroin activates Bim via c-Jun N-terminal kinase/c-Jun pathway to mediate neuronal apoptosis. Neuroscience. 2013; 233: 1-8.

Heusch WL, Maneckjee R: Effects of bombesin on methadone-induced apoptosis of human lung cancer cells. Cancer Lett. 1999; 136(2): 177-185.

Tsai MC, Huang TL: Brain-derived neurotrophic factor (BDNF) and oxidative stress in heroin-dependent male patients undergoing methadone maintenance treatment. Psychiatry Res. 2016; 249: 46-50.

Gutstein HB, Rubie EA, Mansour A, et al.: Opioid effects on mitogen-activated protein kinase signaling cascades. Anesthesiology. 1997; 87(5): 1118-1126.

Lee KM, Kang BS, Lee HL, et al.: Spinal NF-kB activation induces COX-2 upregulation and contributes to inflammatory pain hypersensitivity. Eur J Neurosci. 2004; 19(12): 3375-3381.

Saify K, Saadat M: Expression patterns of antioxidant genes in human SH-SY5Y cells after treatment with methadone. Psychiatry Res. 2015; 230(1): 116-119.

Rodriguez-Delgado MA, Diaz-Flores Estevez JF, Diaz-Flores Estevez F: Fast determination of retinol and alpha-tocopherol in plasma by LC. J Pharm Biomed Anal. 2002; 28(5): 991-997.

Soyka M: New developments in the management of opioid dependence: Focus on sublingual buprenorphine-naloxone. Subst Abuse Rehabil. 2015; 6: 1-14.

Samarghandian S, Azimi-Nezhad M, Afshari R, et al.: Effects of buprenorphine on balance of oxidant/antioxidant system in the different ages of male rat liver. J Biochem Mol Toxicol. 2015; 29(6): 249-253.

Almeida MB, Costa-Malaquias A, Nascimento JL, et al.: Therapeutic concentration of morphine reduces oxidative stress in glioma cell line. Braz J Med Biol Res. 2014; 47(5): 398- 402.

Gulcin I, Beydemir S, Alici HA, et al.: In vitro antioxidant properties of morphine. Pharmacol Res. 2004; 49(1): 59-66.

Kim YS, Kim WY, Kim YH, et al.: The protective effect of hydromorphone to ischemia in rat glial cells. Springerplus. 2016; 5: 610.

Dröge W: Free radicals in the physiological control of cell function. Physiol Rev. 2002; 82(1): 47-95.

Kabbani N, Levenson R: A proteomic approach to receptor signaling: Molecular mechanisms and therapeutic implications derived from discovery of the dopamine D 2 receptor signalplex. Eur J Pharmacol. 2007; 572(2): 83-93.

Sen CK, Packer L: Antioxidant and redox regulation of gene transcription. Faseb J. 1996; 10(7): 709-720.

Ryu H, Lee J, Zaman K, et al.: Sp1 and Sp3 are oxidative stress-inducible, antideath transcription factors in cortical neurons. J Neurosci. 2003; 23(9): 3597-3606.

Tang T, Lin X, Yang H, et al.: Overexpression of antioxidant enzymes upregulates aryl hydrocarbon receptor expression via increased Sp1 DNA-binding activity. Free Radical Biol Med. 2010; 49(3): 487-492.

Borner C, Kraus J: Inhibition of NF-kappaB by opioids in T cells. J Immunol. 2013; 191(9): 4640-4647.

Finkel T: Signal transduction by reactive oxygen species. J Cell Biol. 2011; 194(1): 7-15.

Elsayed NM, Mustafa MG, Mead JF: Increased vitamin E content in the lung after ozone exposure: A possible mobilization in response to oxidative stress. Archives Biochem Biophys. 1990; 282(2): 263-269.

Grinshpoon A, Barchana M, Lipshitz I, et al.: Methadone maintenance and cancer risk: An Israeli case registry study. Drug Alcohol Depend. 2011; 119(1-2): 88-92.

Ide T, Tsutsui H, Ohashi N, et al.: Greater oxidative stress in healthy young men compared with premenopausal women. Arterioscler Thromb Vasc Biol. 2002; 22(3): 438-442.

Rajaratnam R, Sivesind D, Todman M, et al.: The aging methadone maintenance patient: Treatment adjustment, longterm success, and quality of life. J Opioid Manag. 2009; 5(1): 27-37.

Published

07/01/2017

How to Cite

Zahmatkesh, PhD, M., M. Kadkhodaee, PharmD, PhD, A. Salarian, MD, PhD student, B. Seifi, PhD, and S. Adeli, PhD. “Impact of Opioids on Oxidative Status and Related Signaling Pathways: An Integrated View”. Journal of Opioid Management, vol. 13, no. 4, July 2017, pp. 241-5, doi:10.5055/jom.2017.0392.

Issue

Section

Review Articles