AI and crisis leadership: Using the POP-DOC Loop to explore potential implications and opportunities for leaders

Authors

DOI:

https://doi.org/10.5055/jem.0836

Keywords:

crisis leadership, emergency management, disaster preparedness, disaster response, artificial intelligence

Abstract

In the evolving landscape of crisis leadership and emergency management, artificial intelligence (AI) emerges as a potentially transformative force with far-reaching implications. Utilizing the POP-DOC Loop, a comprehensive framework for crisis leadership analysis and decision-making, this paper delves into the diverse roles that AI is poised to play in shaping the future of crisis planning and response. The POP-DOC Loop serves as a structured methodology, encompassing key elements such as information gathering, contextual analysis informed by social determinants, enhanced predictive modeling, guided decision-making, strategic action implementation, and appropriate communication. Rather than offer definitive predictions, this review aims to catalyze exploration and discussion, equipping researchers and practitioners to anticipate future contingencies. The paper concludes by examining the limitations and challenges posed by AI within this specialized context.

Author Biographies

Eric J. McNulty, MA

National Preparedness Leadership Initiative at Harvard University, Harvard T.H. Chan School of Public Health, Cambridge, Massachusetts

Brian R. Spisak, PhD

National Preparedness Leadership Initiative at Harvard University, Harvard T.H. Chan School of Public Health, Cambridge, Massachusetts

Leonard J. Marcus, PhD

National Preparedness Leadership Initiative at Harvard University, Harvard T.H. Chan School of Public Health, Cambridge, Massachusetts

Amal Cheema, MPH

Harvard T.H. Chan School of Public Health, Cambridge, Massachusetts

Ravi Dhawan

Harvard T.H. Chan School of Public Health, Cambridge, Massachusetts

Attila Hertelendy, PhD

Department of Information Systems and Business Analytics, College of Business, Florida International University, University Park, Florida

Shawna Novak, MD, MA, MMSC-GHD

Harvard Medical School, Cambridge, Massachusetts; The Canada International Scientific Exchange Program, Toronto, Ontario, Canada

References

Kuglitsch MM, Pelivan I, Ceola S, et al.: Facilitating adoption of AI in natural disaster management through collaboration. Nat Commun. 2022; 13(1): 1579. DOI: https://doi.org/10.1038/s41467-022-29285-6

Wen C, Liu W, He Z, et al.: Research on emergency management of global public health emergencies driven by digital technology: A bibliometric analysis. Front Public Health. 2023; 10: 1100401. DOI: https://doi.org/10.3389/fpubh.2022.1100401

Marcus LJ, McNulty EJ, Flynn LB, et al.: The POP-DOC loop: A continuous process for situational awareness and situational action. Ind Mark Manag. 2020; 88: 272-277. DOI: https://doi.org/10.1016/j.indmarman.2020.05.019

McCarthy J: Programs with common sense. In Proceedings of the Teddington Conference on the Mechanization of Thought Processes, Her Majesty’s Stationery Office, London. 1958.

Russell SJ, Norvig P, Davis E: Artificial Intelligence: A Modern Approach. 3rd ed. Hoboken, NJ: Prentice Hall, 2010.

Techtarget: The history of artificial intelligence: Complete AI timeline. Available at https://www.techtarget.com/searchenterpriseai/tip/The-history-of-artificial-intelligence-Complete-AItimeline. Accessed September 30, 2023.

Bengio Y, Goodfellow I, Courville A: Deep learning (Vol. 1). Cambridge, MA: MIT Press, 2017.

Devlin J, Chang MW, Lee K, et al.: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805. 2018.

Jarrahi MH: Artificial intelligence and the future of work: Human-AI symbiosis in organizational decision making. Bus Horiz. 2018; 61(4): 577-586. DOI: https://doi.org/10.1016/j.bushor.2018.03.007

Trott S, Jones C, Chang T, et al.: Do large language models know what humans know? Cogn Sci. 2023; 47(7): 2. DOI: https://doi.org/10.1111/cogs.13309

Radford A, Wu J, Child R, et al.: Language models are unsupervised multitask learners. 2019. Available at https://www.semanticscholar.org/paper/Language-Models-are-Unsupervised-Multitask-Learners-Radford-Wu/9405cc0d6169988371b2755e573cc28650d14dfe. Accessed September 30, 2023.

Solberg JCH, Støle F: Generativ kunstig intelligens i journalistikk (Master’s thesis, Norwegian University of Life Sciences). 2023.

Chatterjee J, Dethlefs N: This new conversational AI model can be your friend, philosopher, and guide … and even your worst enemy. Patterns. 2023; 4(1): 100676. DOI: 10.1016/j.patter.2022.100676. DOI: https://doi.org/10.1016/j.patter.2022.100676

Lin CC, Huang AYQ, Yang SJH: A review of AI-driven conversational. ChatBot implementation methodologies and challenges (1999–2022). Sustainability. 2023; 15(5): 4012. DOI: 10.3390/su15054012. DOI: https://doi.org/10.3390/su15054012

Spisak B: Computational Leadership: Connecting Behavioral Science and Technology to Optimize Decision-Making and Increase Profits. Hoboken, NJ: John Wiley & Sons, 2023.

Permacrisis definition and meaning: 2023. Available at https://www.collinsdictionary.com/dictionary/english/permacrisis. Accessed September 22, 2023.

Lawrence M, Janzwood S, Homer-Dixon T: What is a global poly-crisis. Cascade Institute Technical Paper #2022-4. 2022: 4.

Cao L: AI and data science for smart emergency, crisis and disaster resilience. Int J Data Sci Anal. 2023; 15(3): 231-246. DOI: https://doi.org/10.1007/s41060-023-00393-w

Cole A: Data, AI and crisis management. Crisis Response J. 2023; 18(3): 38-39.

Boin A, Stern E, Sundelius B: The Politics of Crisis Management: Public Leadership under Pressure. Cambridge: Cambridge University Press, 2016. DOI: https://doi.org/10.1017/9781316339756

Huang D, Wang S, Liu Z: A systematic review of prediction methods for emergency management. Int J Disaster Risk Reduct. 2021; 62: 102412. DOI: https://doi.org/10.1016/j.ijdrr.2021.102412

Sanderson K: GPT-4 is here: What scientists think. Nature. 2023; 615(7954): 773-773. DOI: https://doi.org/10.1038/d41586-023-00816-5

Alon-Barkat S, Busuioc M: Human–AI interactions in public sector decision making: “automation bias” and “selective adherence” to algorithmic advice. J Public Adm Res Theory. 2023; 33(1): 153-169. DOI: https://doi.org/10.1093/jopart/muac007

Boin A, Kuipers S, Overdijk W: Leadership in times of crisis: A framework for assessment. Int Rev Public Adm. 2013; 18(1): 79-91. DOI: https://doi.org/10.1080/12294659.2013.10805241

Weick KE: Sensemaking in organizations. Thousand Oaks, CA: Sage Publications, 1995.

Pan SL, Pan G, Leidner DE: Crisis response information networks. J Assoc Inf Syst. 2012; 13(1): 31-56. DOI: https://doi.org/10.17705/1jais.00283

Posner MI, Rothbart MK: Research on attention networks as a model for the integration of psychological science. Annu Rev Psychol. 2007; 58: 1-23. DOI: https://doi.org/10.1146/annurev.psych.58.110405.085516

Bose R, Pintar AL, Simiu E: Simulation of Atlantic hurricane tracks and features: A coupled machine learning approach. Artif Intell Earth Syst. 2023; 2(2): 220060. DOI: https://doi.org/10.1175/AIES-D-22-0060.1

Spisak B: How data can make better managers. Harv Bus Rev. 2022. Available at https://hbr.org/2022/03/how-data-can-make-bettermanagers. Accessed September 14, 2023.

Xue Z, Xu C, Xu X: Application of ChatGPT in natural disaster prevention and reduction. Nat Hazards Res. 2023; 3(3): 556-562. DOI: https://doi.org/10.1016/j.nhres.2023.07.005

Essien AE, Petrounias I: An artificial intelligence (AI)-based decision-making framework for crisis management. In Future Role of Sustainable Innovative Technologies in Crisis Management. Hershey, PA: IGI Global, 2022: 84-98. DOI: https://doi.org/10.4018/978-1-7998-9815-3.ch007

Banerjee S, Singh PK, Bajpai J: A comparative study on decision-making capability between human and artificial intelligence. In Nature Inspired Computing: Proceedings of CSI 2015. Berlin: Springer, 2018: 203-210. DOI: https://doi.org/10.1007/978-981-10-6747-1_23

Marcus LJ, McNulty EJ, Henderson JM, et al.: You’re It: Crisis, Change, and How to Lead When It Matters Most. New York, NY: PublicAffairs, 2019. DOI: https://doi.org/10.1002/ltl.20470

Senge PM: The Fifth Discipline: The Art and Practice of the Learning Organization. New York City, NY: Broadway Business, 2006.

Pfeffer J, Sutton RI: The Knowing-Doing Gap: How Smart Companies Turn Knowledge into Action. Boston, MA: Harvard Business Press, 2000. DOI: https://doi.org/10.1108/scm.2001.6.3.142.1

Spisak B, Rosenberg L, Beilby M: 13 principles for using AI responsibly. Harv Bus Rev. 2023. Available at https://hbr.org/2023/06/13-principles-for-using-ai-responsibly. Accessed September 14, 2023.

Bender EM, Gebru T, McMillan-Major A, et al.: On the dangers of stochastic parrots: Can language models be too big? In Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency. 2021: 610-623. DOI: https://doi.org/10.1145/3442188.3445922

Bolukbasi T, Chang KW, Zou J, et al.: Quantifying and reducing stereotypes in word embeddings. arXiv preprint arXiv:1606.06121. 2016.

Published

04/01/2024

How to Cite

McNulty, E. J., B. R. Spisak, L. J. Marcus, A. Cheema, R. Dhawan, A. Hertelendy, and S. Novak. “AI and Crisis Leadership: Using the POP-DOC Loop to Explore Potential Implications and Opportunities for Leaders”. Journal of Emergency Management, vol. 22, no. 2, Apr. 2024, pp. 119-27, doi:10.5055/jem.0836.