Live agent training as an important process safety measure to strengthen resilience in hazardous (CBRN) work situations
DOI:
https://doi.org/10.5055/jem.0789Keywords:
live agent training, chemical, biological, radiological, and nuclear training, Hazmat training, emergency training, real-world training, high hazard situations, chemical warfare agent training, RN trainingAbstract
Various occupational groups as well as emergency responders are important human factors in combating incidents and emergencies in a broad range. Negative deviations from a process-safe condition should be detected and transformed into a safer condition to prevent negative consequences. Therefore, training and education of personnel is an important measure in this case as well as a major influencing factor on the vulnerability to errors during operations and their resilience. From lack of training to incorrect execution due to excessive stress, fear, or unfamiliar situations, it is important to counteract this with targeted training under conditions that are as close to reality as reasonably achievable. Realistic training situations involving live agents allow to recognize mistakes or inadequacies not only in personnel but also in material or in mission planning and to create a more effective working environment. Many violations of work guidelines are due to well-intentioned deviations from nonexecutable standard operation procedures that have never been tested. Repeated, progressive training under real hazardous conditions can help to strengthen mission readiness and resilience of teams. It better prepares them for their dangerous activities.
References
Dungan KW: Incorporating Resiliency Concepts into NFPA Codes and Standards. New York, NY: Springer, 2016. DOI: https://doi.org/10.1007/978-1-4939-6511-3
Hollnagel E: Resilience Engineering in Practice: A Guidebook. Farnham: Ashgate, 2011.
Djalali A, Della Corte F, Segond F, et al.: TIER competency-based training course for the first receivers of CBRN casualties: A European perspective. Eur J Emerg Med. 2016; 24. DOI: 10.1097/MEJ.0000000000000383. DOI: https://doi.org/10.1097/MEJ.0000000000000383
Saurin TA, Wachs P, Righi AW, et al.: The design of scenario-based training from the resilience engineering perspective: A study with grid electricians. Accid Anal Prev. 2014; 68: 30-41. DOI: 10.1016/j.aap.2013.05.022. DOI: https://doi.org/10.1016/j.aap.2013.05.022
Son C, Sasangohar F, Neville T, et al.: Investigating resilience in emergency management: An integrative review of literature. Appl Ergon. 2020; 87: 103114. DOI: 10.1016/j.apergo.2020.103114. DOI: https://doi.org/10.1016/j.apergo.2020.103114
Gomes JO, Borges MRS, Huber GJ, et al.: Analysis of the resilience of team performance during a nuclear emergency response exercise. Appl Ergon. 2014; 45(3): 780-788. DOI: 10.1016/j.apergo.2013.10.009. DOI: https://doi.org/10.1016/j.apergo.2013.10.009
Proctor RW, Dutta A: Skill Acquisition and Human Performance. Thousand Oaks, CA: Sage Publications Inc, 1995.
Fleischman EA, Mumford MD: Abilities as causes of individual differences in skill acquisition. Hum Perform. 1989; 2(3): 201-223. DOI: 10.1207/s15327043hup0203_4. DOI: https://doi.org/10.1207/s15327043hup0203_4
Stokes JW, Banderet LE: Psychological aspects of chemical defense and warfare. Mil Psychol. 1997; 9(4): 395-415. DOI: 10.1207/s15327876mp0904_8. DOI: https://doi.org/10.1207/s15327876mp0904_8
C´urcˇic´ M: The role of CBRN live agent training in education of first responders. Contemporary Security Challenges. 2021. Available at http://eskup.kpu.edu.rs/dar/article/view/316. Accessed December 20, 2022.
IAEA: Update 94—IAEA director general statement on situation in Ukraine. International Atomic Energy Agency. 2022. Available at https://www.iaea.org/newscenter/pressreleases/update-94-iaea-director-general-statement-on-situation-in-ukraine. Accessed August 25, 2022.
Aven T, Renn O: On risk defined as an event where the outcome is uncertain. J Risk Res. 2009; 12(1): 1-11. DOI: 10.1080/13669870802488883. DOI: https://doi.org/10.1080/13669870802488883
Ventsislavova P, Crundall D: The hazard prediction test: A comparison of free-response and multiple-choice formats. Saf Sci. 2018; 109: 246-255. DOI: 10.1016/j.ssci.2018.06.004. DOI: https://doi.org/10.1016/j.ssci.2018.06.004
Huang L, Ban J, Sun K, et al.: The influence of public perception on risk acceptance of the chemical industry and the assistance for risk communication. Saf Sci. 2013; 51(1): 232-240. DOI: 10.1016/j.ssci.2012.05.018. DOI: https://doi.org/10.1016/j.ssci.2012.05.018
Blazsin H, Guldenmund F: The social construction of safety: Comparing three realities. Saf Sci. 2015; 71: 16-27. DOI: 10.1016/j.ssci.2014.06.001. DOI: https://doi.org/10.1016/j.ssci.2014.06.001
Stolar A: Live CBRN agent training for responders as a key role in a safe crisis recovery. In Barry DL, Coldewey WG, Reimer DWG, et al. (eds.): NATO Science for Peace and Security Series—E: Human and Societal Dynamics. Amsterdam: IOS Press, 2012: 58-66. DOI: 10.3233/978-1-61499-039-0-58.
Stolar A: Real-world training for hazardous activities: Use or lose your SOPs for occupational and legal safety. In 6th International Symposium on the System of Radiological Protection. Vancouver. Ottawa, Ontario: ICRP, 2022.
Bisbey TM, Kilcullen MP, Thomas EJ, et al.: Safety culture: An integration of existing models and a framework for understanding its development. Hum Factors. 2021; 63(1): 88-110. DOI: 10.1177/0018720819868878. DOI: https://doi.org/10.1177/0018720819868878
Latief Y, Machfudiyanto RA, Arifuddin R, et al.: Understanding the relationship between safety culture dimensions and safety performance of construction projects through partial least square method. AIP Conf Proc. 2017; 1818(1): 020028. DOI: 10.1063/1.4976892. DOI: https://doi.org/10.1063/1.4976892
Weick KE: Sensemaking in Organizations. Thousand Oaks: Sage Publications, 1995.
Cooper M, Cotton D: Safety training—A special case? J Eur Ind Train. 2000; 24(9): 481-490. DOI: 10.1108/03090590010358205. DOI: https://doi.org/10.1108/03090590010358205
Hearts & Minds (ed.): Making Compliance Easier (Formerly Managing Rule Breaking). 4th ed. London: Energy Institute, 2020.
Reason J: The Human Contribution: Unsafe Acts, Accidents and Heroic Recoveries. Burlington, VT: Ashgate, 2008.
Bernardes M, Trzesniak C, Trbovich P, et al.: Applying human factors engineering methods for hazard identification and mitigation in the radiotherapy process. Saf Sci. 2018; 109: 270-280. DOI: 10.1016/j.ssci.2018.06.002. DOI: https://doi.org/10.1016/j.ssci.2018.06.002
Klein JA, Vaughen BK: A revised program for operational discipline. Proc Safety Prog. 2008; 27(1): 58-65. DOI: 10.1002/prs.10216. DOI: https://doi.org/10.1002/prs.10216
Reason J: Human Error. New York: Cambridge University Press, 1990. DOI: https://doi.org/10.1017/CBO9781139062367
Hudson P, Vuijk M, Bryden R, et al.: Meeting expectations: A new model for a just and fair culture. In Society of Petroleum Engineers—9th International Conference on Health, Safety and Environment in Oil and Gas Exploration and Production 2008—“In Search of Sustainable Excellence.” Vol. 4, 2008: 2079-2090. DOI: 10.2118/111977-ms. DOI: https://doi.org/10.2118/111977-MS
Yang K, Tao L, Bai J: Assessment of flight crew errors based on THERP. Procedia Eng. 2014; 80: 49-58. DOI: 10.1016/j.proeng.2014.09.059. DOI: https://doi.org/10.1016/j.proeng.2014.09.059
Latorella K, Prabhu P: A review of human error in aviation maintenance and inspection. Hum Error Aviat. 2017; 521-549. DOI: 10.4324/9781315092898-27. DOI: https://doi.org/10.4324/9781315092898-27
Rankin A, Field J, Wong BL, et al.: Scenario design for training systems in crisis management: Training resilience capabilities. In Fourth Resilience Engineering Symposium, June 8-10, 2011, Sophia Antipolis, France. 2011: 227-233. DOI: https://doi.org/10.4000/books.pressesmines.1093
Rietjens S, Van Fenema PC, Essens P: “Train as you fight” revisited. Prism. 2013; 4(2): 17-29. Available at http://www.jstor.org/stable/26469807. Accessed December 20, 2022.
Jenvald J, Morin M: Simulation-supported live training for emergency response in hazardous environments. Simul Gaming. 2004; 35(3): 363-377. DOI: 10.1177/1046878104266223. DOI: https://doi.org/10.1177/1046878104266223
Robotham G: Safety training that works. Prof Saf. 2001; 46(5): 33-37. Available at https://www.proquest.com/scholarly-journals/safetytraining-that-works/docview/200411506/se-2?accountid=39579. Accessed December 20, 2022.
Wilkinson AF, Matias AA, Eddy CIKK, et al.: Physiologic strain of SCBA confidence course training compared to circuit training and live-fire training. Appl Ergon. 2020; 82: 102966. DOI: 10.1016/j.apergo.2019.102966. DOI: https://doi.org/10.1016/j.apergo.2019.102966
Mani A, Musolin K, James K, et al.: Risk factors associated with live fire training: Buildup of heat stress and fatigue, recovery and role of micro-breaks. OER. 2013; 11: 109-121. DOI: 10.3233/OER.130212. DOI: https://doi.org/10.3233/OER-130212
Kako M, Hammad K, Mitani S, et al.: Existing approaches to chemical, biological, radiological, and nuclear (CBRN) education and training for health professionals: Findings from an integrative literature review. Prehosp Disaster Med. 2018; 33: 182-190. DOI: 10.1017/S1049023X18000043. DOI: https://doi.org/10.1017/S1049023X18000043
Gama Za da S, Saturno-Hernandez PJ, Caldas ACSG, et al.: AGRASS questionnaire: Assessment of risk management in health care. Rev Saúde Pública. 2020; 54: 21. DOI: 10.11606/S1518-8787.2020054001335. DOI: https://doi.org/10.11606/s1518-8787.2020054001335
Demirkesen S, Arditi D: Construction safety personnel’s perceptions of safety training practices. Int J Proj Manag. 2015; 33(5): 1160-1169. DOI: 10.1016/j.ijproman.2015.01.007. DOI: https://doi.org/10.1016/j.ijproman.2015.01.007
Abiew F: NGO-military relations in peace operations. Int Peacekeeping. 2003; 10: 24-39. DOI: 10.1080/714002394. DOI: https://doi.org/10.1080/714002394
Lin Y, Burghardt K, Rohden M, et al.: Self-organization of dragon king failures. Phys Rev E. 2018; 98(2). DOI: 10.1103/PhysRevE.98.022127. DOI: https://doi.org/10.1103/PhysRevE.98.022127
Aven T: On the meaning of a black swan in a risk context. Saf Sci. 2013; 57: 44-51. DOI: 10.1016/j.ssci.2013.01.016. DOI: https://doi.org/10.1016/j.ssci.2013.01.016
Sornette D: Dragon-kings, black swans and the prediction of crises. CCSS Working Paper No. CCSS-09-005. 2009. DOI: 10.2139/ssrn.1596032. DOI: https://doi.org/10.2139/ssrn.1470006
Reniers G, Ale B, Dullaert W, et al.: Designing continuous safety improvement within chemical industrial areas. Saf Sci. 2009; 47: 578-590. DOI: 10.1016/j.ssci.2008.07.003. DOI: https://doi.org/10.1016/j.ssci.2008.07.003
Brown C, Eriksson K: A plan for (certain) failure: Possibilities for and challenges of more realistic emergency plans. Int J Emerg Manag. 2008; 5(3-4): 292-310. DOI: 10.1504/IJEM.2008.025099. DOI: https://doi.org/10.1504/IJEM.2008.025099
Cabrera Aguilera MV, Bastos da Fonseca B, Ferris TK, et al.: Modelling performance variabilities in oil spill response to improve system resilience. J Loss Prev Process Ind. 2016; 41: 18-30. DOI: 10.1016/j.jlp.2016.02.018. DOI: https://doi.org/10.1016/j.jlp.2016.02.018
Chuang S, Ou JC, Hollnagel E, et al.: Measurement of resilience potential—Development of a resilience assessment grid for emergency departments. PLoS One. 2020; 15: E0239472. DOI: 10.1371/journal.pone.0239472. DOI: https://doi.org/10.1371/journal.pone.0239472
Hollnagel E: Systemic potentials management (SPM) formerly referred to as the resilience assessment grid (RAG). 2022. Available at https://erikhollnagel.com/ideas/rag-2011. Accessed June 22, 2022.
Field J, Rankin A, Van Der Pal J, et al.: Variable uncertainty: Scenario design for training adaptive and flexible skills. In ECCE 2011—European Conference on Cognitive Ergonomics 2011: 29th Annual Conference of the European Association of Cognitive Ergonomics. 2011: 27-33. DOI: 10.1145/2074712.2074719. DOI: https://doi.org/10.1145/2074712.2074719
Burke M, Salvador R, Smith-Crowe K, et al.: The dread factor: How hazards and safety training influence learning and performance. J Appl Psychol. 2011; 96: 46-70. DOI: 10.1037/a0021838. DOI: https://doi.org/10.1037/a0021838
Hale AR: Is safety training worthwhile? J Occup Accid. 1984; 6(1): 17-33. DOI: 10.1016/0376-6349(84)90026-9. DOI: https://doi.org/10.1016/0376-6349(84)90026-9
Knudson GB: Nuclear, biological, and chemical training in the US Army reserves: Mitigating psychological consequences of weapons of mass destruction. Mil Med. 2001; 166(Suppl_2): 63-65. DOI: 10.1093/milmed/166.suppl_2.63. DOI: https://doi.org/10.1093/milmed/166.suppl_2.63
Gaman GA, Pupazan D, Nicolescu C, et al.: Research on designing and making of a mobile training facility for intervention and rescue personnel in toxic/flammable/explosive environments.
MATEC Web Conf. 2021; 342: 01005. Available at https://doi. DOI: https://doi.org/10.1051/matecconf/202134201005
org/10.1051/matecconf/202134201005. Accessed December 20, 2022.
Stocker C, Sunshine-Hill B, Drake J, et al.: CRAM it! A comparison of virtual, live-action and written training systems for preparing personnel to work in hazardous environments. In 2011 IEEE Virtual Reality Conference. 2011: 95-102. DOI: 10.1109/VR.2011.5759444. DOI: https://doi.org/10.1109/VR.2011.5759444
Vardi A, Levin I, Berkenstadt H, et al.: Simulation-based training of medical teams to manage chemical warfare casualties. Isr Med Assoc J. 2002; 4: 540-544.
Nasios K: Improving chemical plant safety training using virtual reality—Nottingham ePrints. 2002. Available at http://eprints.nottingham.ac.uk/10039/. Accessed April 17, 2022.
Göllner J, Peer A, Meurers C, et al.: Virtual reality CBRN defence. In Meeting Proceedings of the Simulation and Modelling Group Symposium 171. Vienna: STO, 2019: 25. Available at https://www.sto.nato.int/publications/STO Meeting Proceedings/STO-MPMSG-171/MP-MSG-171-16.pdf. Accessed December 20, 2022.
Barnes SL, Bukoski A, Kerby JD, et al.: Live tissue versus simulation training for emergency procedures: Is simulation ready to replace live tissue? Surgery. 2016; 160(4): 997-1007. DOI: 10.1016/j.surg.2016.04.044. DOI: https://doi.org/10.1016/j.surg.2016.04.044
Robson LS, Stephenson CM, Schulte PA, et al.: A systematic review of the effectiveness of occupational health and safety training. Scand J Work Environ Health. 2012; 38(3): 193-208. Available at http://www.jstor.org/stable/41508885. Accessed December 20, 2022. DOI: https://doi.org/10.5271/sjweh.3259
Brown GR, Nordyke JW, Gerlock DL, et al.: Training analysis and feedback aids TAFF Aids study for live training support Study Report 1998. Alexandria VA: US Army Research Institute for the Behavioral and Social Sciences DTIC No AD A351 107. Available at https://apps.dtic.mil/sti/pdfs/ADA351107.pdf. Accessed October 6, 2022.
Fatkin LT, Hudgens GA: Stress perceptions of soldiers participating in training at the chemical defense training facility: The mediating effects of motivation, experience, and confidence level. Army Research Laboratory. 1994; 296. Available at https://apps.dtic.mil/sti/citations/ADA276961. Accessed April 17, 2022. DOI: https://doi.org/10.1037/e447282006-001
Martellini M: Cyber and Chemical, Biological, Radiological, Nuclear, Explosives Challenges. New York, NY: Springer Berlin Heidelberg, 2017. DOI: https://doi.org/10.1007/978-3-319-62108-1
Greenley & Associates: CTTC Live Agent Training Study Report. Suffield: Canada, 2005.
Gouweloos J, Dückers M, Te Brake H, et al.: Psychosocial care to affected citizens and communities in case of CBRN incidents: A systematic review. Environ Int. 2014; 72: 46-65. DOI: 10.1016/j.envint.2014.02.009. DOI: https://doi.org/10.1016/j.envint.2014.02.009
Lemyre L, Clement M, Corneil W, et al.: A psychosocial risk assessment and management framework to enhance response to CBRN terrorism threats and attacks. Biosecur Bioterror. 2005; 3: 316-330. DOI: 10.1089/bsp.2005.3.316. DOI: https://doi.org/10.1089/bsp.2005.3.316
Wuthnow R: Be Very Afraid: The Cultural Response to Terror, Pandemics, Environmental Devastation, Nuclear Annihilation, and Other Threats. New York: Oxford University Press, 2010.
Coughlin RJ, Smith PS, Healy SL: Impact of toxic agent training on combat readiness. 1992. Available at https://ntrl.ntis.gov/NTRL/dashboard/searchResults/titleDetail/ADA248991.xhtml. Accessed August 21, 2022.
Babisch W, Fromme H, Beyer A, et al.: Increased catecholamine levels in urine in subjects exposed to road traffic noise: The role of stress hormones in noise research. Environ Int. 2001; 26(7): 475-481. DOI: 10.1016/S0160-4120(01)00030-7. DOI: https://doi.org/10.1016/S0160-4120(01)00030-7
James GD, Brown DE: The biological stress response and lifestyle: Catecholamines and blood pressure. Annu Rev Anthropol. 1997; 26: 313-335. Available at http://www.jstor.org/stable/2952525. Accessed December 20, 2022. DOI: https://doi.org/10.1146/annurev.anthro.26.1.313
van der Beek AJ, Meijman TF, Frings-Dresen MH, et al.: Lorry drivers' work stress evaluated by catecholamines excreted in urine. Occup Environ Med. 1995; 52(7): 464-469. DOI: 10.1136/oem.52.7.464. DOI: https://doi.org/10.1136/oem.52.7.464
Kvetňanský R: Stoner HBBT-H in I and S. In Biró Z, Kovách AGB, Spitzer JJ (eds.): Plasma Catecholamines in Emergency Situations. Pergamon, Advances in Physiological Sciences. 1981: 121-129. DOI: 10.1016/B978-0-08-027347-1.50019-0. DOI: https://doi.org/10.1016/B978-0-08-027347-1.50019-0
Tharion W, Potter A, Duhamel C, et al.: Real-time physiological monitoring while encapsulated in personal protective equipment. J Sport Hum Perform. 2013; 1. DOI: 10.12922/jshp.0030.2013.
Yokota M, Karis AJ, Tharion WJ: Thermal-work strain in law enforcement personnel during chemical, biological, radiological, and nuclear (CBRN) training. Int J Occup Environ Health. 2014; 20(2): 126-133. DOI: 10.1179/2049396714Y.0000000056. DOI: https://doi.org/10.1179/2049396714Y.0000000056
Rossignol N, van Oudheusden M: Learning from incidents and incident reporting: Safety governance at a Belgian nuclear research center. Sci Technol Hum Values. 2017; 42(4): 679-702. DOI: 10.1177/0162243916686168. DOI: https://doi.org/10.1177/0162243916686168
Cho SK: Development of the nuclear safety trust indicator. Nucl Eng Technol. 2018; 50(7): 1168-1172. DOI: 10.1016/j.net.2018.07.002. DOI: https://doi.org/10.1016/j.net.2018.07.002
Renn O: The role of risk perception for risk management. Reliab Eng Syst Saf. 1998; 59(1): 49-62. DOI: 10.1016/S0951-8320(97)00119-1. DOI: https://doi.org/10.1016/S0951-8320(97)00119-1
Stolar A: Risky language—Or a common language for risk communication and process safety? In Wien TU (ed.): Proceedings of the 16 Minisymposium Verfahrenstechnik & 7 Partikelforum. Wien: Jordan, 2020: 4. DOI: 10.34726/56576.
Stolar A: Visual safety analysis techniques for emergency responders. In ICRP International Conference on Recovery After Nuclear Accidents—Radiological Protection Lessons from Fukushima and Beyond. Ottawa, Ontario: ICRP, 2020: 5. Available at https://www.icrprecovery.org/post/cp-07. Accessed December 20, 2022.
Wu X, Liu Q, Zhang L, et al.: Prospective safety performance evaluation on construction sites. Acc Anal Prevent. 2015; 78: 58-72. DOI: 10.1016/j.aap.2015.02.003. DOI: https://doi.org/10.1016/j.aap.2015.02.003
Darvishi E, Maleki A, Dehestaniathar S, et al.: Effect of STOP technique on safety climate in a construction company. J Res Health Sci. 2015; 15(2): 109-112.
Kollek D, Welsford M, Wanger K: Chemical, biological, radiological and nuclear preparedness training for emergency medical services providers. Can J Emerg Med. 2009; 11(4): 337-342. DOI: 10.1017/S1481803500011386. DOI: https://doi.org/10.1017/S1481803500011386
Stolar A: Table-top trainings in radiation protection. Educational Element or Emergency Planning? Germany: TÜV Media, 2009. Available at http://inis.iaea.org/search/search.aspx?orig_q=RN:41057844. Accessed December 20, 2022.
Brown R: Hazard communication-key to work safety. Opflow. 1995; 21(1): 3-5. DOI: 10.1002/j.1551-8701.1995.tb00979.x. DOI: https://doi.org/10.1002/j.1551-8701.1995.tb00979.x
Published
How to Cite
Issue
Section
License
Copyright 2007-2023, Weston Medical Publishing, LLC and Journal of Emergency Management. All Rights Reserved